
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

SmartDIMM: In-Memory Acceleration of
Upper Layer Protocols

Neel Patel Amin Mamandipoor Mohammad Nouri Mohammad Alian
University of Kansas

{nmpatel,amin.mamandi, mohammadnouri,alian}@ku.edu

Abstract—There has been significant focus on offloading upper-
layer network protocols (ULPs) to accelerators located on CPUs
and SmartNICs. However, restricting accelerator placement to
these locations limits both the variety of ULPs that can be acceler-
ated and the overall performance. In particular, it overlooks the
opportunity to accelerate ULPs running atop a stateful transport
protocol in the face of high cache contention. That is, at high
network rates, the frequent DRAM accesses and SmartNIC-CPU
synchronizations outweigh the benefits of hardware acceleration.
This work introduces SmartDIMM, which unlocks the opportunity
for accelerating ULPs running atop stateful transport protocols
that primarily operate on data stored in DRAM. We prototyped
SmartDIMM using Samsung’s AxDIMM and implemented end-
to-end offloading of (de/en)cryption and (de)compression– two
ULPs widely employed in datacenters. We then compared the
performance of SmartDIMM with accelerator placements on the
CPU, SmartNIC, and PCIe cards. Our results demonstrate that
ULP offloading on SmartDIMM outperforms CPU, SmartNIC
and PCIe-based offload configurations. In comparison to a
server executing (de/en)cryption and (de)compression on the
CPU, SmartDIMM achieves 21.0% to 10.28× higher requests per
second and 36.3% to 88.9% lower memory bandwidth utilization.

I. INTRODUCTION

Upper Layer Network Protocols (ULPs) are widely deployed
at scale for data protection via encryption [1–3], facilitating
communication in heterogeneous software deployments via
serialization [4–7], and reducing data transfer times via
compression [8, 9]. Such operations, often referred to as
datacenter taxes, consume a significant number of datacenter
cycles [10, 11], with (de)compression and (de/en)cryption
consuming up to 14% and 23% of datacenter cycles for top
Google and Meta services [12–14].

With the effective end of Dennard’s scaling and the ex-
ponential increase in network bandwidth requirements in
datacenters [15], supplying the compute demand of ULPs
is only possible through hardware acceleration. Current plat-
forms for accelerating (de/en)cryption and (de)compression
include SmartNICs [16–19], PCIe cards [20–22], and CPU
chips [23, 24]. However, these accelerator placements are
sub-optimal for accelerating ULPs operating atop the layered
network software stack, which can exhibit several hundred
milliseconds of latency between software layers. That is, the
excessive data movement over PCIe and DDR channels [25]
and frequent SmartNIC-CPU synchronizations [26] diminishes
the benefits of hardware acceleration.

Figure 1a shows a sub-optimal configuration in which the
CPU is responsible for ULP processing. In this example, a

DRAM

memcpy

Dummy

TCP/IP

LLC

2

3

4

WB
read

WB
read

DMA

Enc

5

6Enc

DRAMCore

SSD

NIC

1

CompCpy

TCP/IP

LLC

2

4

5

DRAMCore

SSD

NIC

1

DMA

DMA

Enc3

DMA5

Sync on packet
loss/reorder

DRAM

memcpy

TCP/IP

LLC

2

3

4

WB
read

WB
read

DMA

Enc

5

DRAMCore

SSD

NIC

1

DMA

WB WB

DMA

DMA5DMA5

Unencrypted Message Encrypted Message TCP Header

(a) CPU

DRAM

memcpy

Dummy

TCP/IP

LLC

2

3

4

WB
read

WB
read

DMA

Enc

5

6Enc

DRAMCore

SSD

NIC

1

CompCpy

TCP/IP

LLC

2

4

5

DRAMCore

SSD

NIC

1

DMA

DMA

Enc3

DMA5

Sync on packet
loss/reorder

DRAM

memcpy

TCP/IP

LLC

2

3

4

WB
read

WB
read

DMA

Enc

5

DRAMCore

SSD

NIC

1

DMA

WB WB

DMA

DMA5DMA5

Unencrypted Message Encrypted Message TCP Header

(b) SmartNIC

DRAM

memcpy

Dummy

TCP/IP

LLC

2

3

4

WB
read

WB
read

DMA

Enc

5

6Enc

DRAMCore

SSD

NIC

1

CompCpy

TCP/IP

LLC

2

4

5

DRAMCore

SSD

NIC

1

DMA

DMA

Enc3

DMA5

Sync on packet
loss/reorder

DRAM

memcpy

TCP/IP

LLC

2

3

4

WB
read

WB
read

DMA

Enc

5

DRAMCore

SSD

NIC

1

DMA

WB WB

DMA

DMA5DMA5

Unencrypted Message Encrypted Message TCP Header

(c) This Work

Fig. 1. System-level data movement in a web server that encrypts web pages
stored on a storage device before packetizing them and sending them over
TCP connections to clients. At high request rates, (a) on-chip encryption
acceleration is hindered by frequent DRAM accesses, and (b) autonomous
NIC offloading [26] of encryption is limited by both CPU side memory copies
as well as costly synchronizations between the NIC and CPU during packet
reorderings and losses. (c) SmartDIMM unleashes the full potential of ULP
acceleration by minimizing system-level data movement, without disrupting
the layered storage and network software stack.

web-server application encrypts websites before sending them
through TCP connections to clients. Owing to the streaming
nature of data serving, the large working set of the web server,
and the asynchronicity between the storage stack, encryption-
layer protocol, and TCP/IP packet processing, data read from
storage frequently exhibits a ping-pong access pattern between
on-chip caches and DRAM before being sent over the network.
Fig.1b demonstrates the offloading of encryption to a SmartNIC,
where the encryption of TCP payloads is postponed until the
payload reaches the SmartNIC accelerator, while the TCP
header is constructed using the TCP/IP stack on the CPU.
Although SmartNIC offloading can free CPU cycles, it may
still be subject to the ping-pong data movement between caches
and DRAM, as well as synchronization overheads between the
CPU and SmartNIC following packet reordering or losses [26].

In this work, we introduce SmartDIMM that enables fine-
grain, adaptive offloading of ULP processing to memory.
SmartDIMM implements a domain-specific accelerator on the
buffer device of a Dual In-line Memory Module (DIMM) and
synchronously transforms data as it traverses the DDR chan-
nel. Additionally, SmartDIMM’s software stack dynamically
probes the LLC contention and adaptively enables or disables

mailto:nmpatel@ku.edu
mailto:amin.mamandi@ku.edu
mailto:mohammadnouri@ku.edu
mailto:alian@ku.edu

offloading of ULP processing to memory. Fig.1c illustrates
how SmartDIMM eliminates cache thrashing by rerouting
outbound network data to directly pass through DRAM, while
the unmodified TCP/IP stack operates on the CPU.

Adaptively offloading computation to memory Requires (R1)
sharing the address space between the CPU and SmartDIMM,
(R2) operating SmartDIMM as a regular DIMM when ULPs are
processed on the CPU, and (R3) implementing a lightweight
synchronization mechanism between the CPU and near-memory
processors. Meeting requirements R1 and R2 is challenging
with JEDEC-compliant DDR-attached DIMMs, as only one
memory controller can be used to maintain the status of
each DRAM bank [27–29]. Fulfilling R3 through conventional
polling or interrupt mechanisms introduces significant overhead.
Although prior work [30] eliminates the notification overhead
by performing computation synchronously with memory ac-
cesses, it does not share the address space and tends to use
memory modules more as accelerators than as memory devices.

To meet the aforementioned requirements, we introduce the
concept of Compute Copy (CompCpy). CompCpy is an API
that transforms data within SmartDIMM while concurrently
copying it from a source buffer to a destination buffer. This
approach enables ULP offloading without requiring extensive
code changes in existing software stacks and ULP frameworks.
As offloads are performed synchronously, the software does
not need to depend on polling or interrupts to synchronize with
the near-memory processor, thus satisfying requirement R3.

We developed a SmartDIMM prototype capable of of-
floading Transport Layer Security (TLS) processing using
Samsung’s AxDIMM [31]. To facilitate application-layer access
to SmartDIMM, we implemented an OpenSSL engine [32]
which utilizes the CompCpy API to skip the library’s on-CPU
(de/en)cryption routines and instead pass (un)encrypted TLS
messages to the (de/en)cryption engine on SmartDIMM.

Offloading (de/en)cryption and (de)compression as rep-
resentative ULPs to SmartDIMM results in 21.0%-10.28×
and 11.9%-50.3% higher requests per second, respectively,
compared to a server executing them on the CPU and Smart-
NIC. Additionally, SmartDIMM achieves 36.3%-88.9% and
7.6%-59.9% lower memory bandwidth utilization, respectively,
compared with CPU and SmartNIC implementations.

In this work we make the following contributions:
• Identify that DRAM is on the processing path of ULPs

running atop the layered software stack in the era of
high-throughput network devices.

• Introduce SmartDIMM, a bump-in-the-DDR near-memory
processing architecture for in-line acceleration of ULPs.

• Utilize the on-chip caches to implement a novel self-
recycling mechanism, autonomously recycling a near-
memory scratchpad.

• Introduce CompCpy API that transforms data within
memory while concurrently copying it from a source
buffer to a destination buffer.

• Prototype SmartDIMM on Samsung’s AxDIMM to ac-
celerate two widely used ULPs, (de/en)cryption and
(de)compression, without modifying the cost-sensitive

DRAM devices, the CPU memory controller, or the
synchronous JEDEC-compliant DDR interface.

II. BACKGROUND

Upper-layer protocols (ULPs) – also known as layer-5
network protocols – are widespread, seeing use across the
Internet and in production environments. They often reside
on top of the TCP/IP layer, providing additional services
to applications. (de/en)cryption and (de)compression are two
important ULPs that consume a significant number of cycles
in datacenters [14]. In this section we provide background on
these two ULPs.
(De/en)cryption. The Transport Layer Security (TLS) [33]
protocol provides privacy over a reliable, yet insecure, network
connection between two clients. TLS is often added on top of
TCP/IP, with messages being encrypted or decrypted before
they are sent to or received from the TCP layer.

AES-GCM [34] is an authenticated encryption algorithm,
widely adopted as the block cipher in TLS 1.2 and TLS 1.3.
It encrypts plaintext messages by performing bitwise XOR
operations with an encrypted stream. This stream is generated
by incrementing and encrypting a counter value, which is
initially combined with an initialization vector (IV). To provide
authentication, a GHASH function is applied, and its result
is appended to the TLS record as an authentication tag. AES-
GCM is widely used due to its performance, as it can be
effectively pipelined in hardware and parallelized.
(De)compression. Dictionary-based compression algorithms,
such as Deflate [35], are employed to compress HTTP responses
from clients [36]. Deflate operates in two stages: compression
and encoding. Initially, the data stream is processed using the
dictionary-based LZ77 algorithm [37]. In this phase, input data
is compared with entries in a dynamically updated dictionary,
based on the contents of a sliding history window. When a
match is found in the dictionary, the matching data is replaced
with an LZ symbol that indicates the length of the duplicate
string and the distance from its previous occurrence. Following
the LZ77 match-finding phase, the data undergoes Huffman
encoding [38], where input symbols are replaced with shorter-
length codes.
System-level Data Movement with ULPs. As illustrated in
Fig.1, before a network message is processed by a ULP, it is
cloned into another buffer designated to hold the ULP’s result
(e.g., encrypted text). In addition to ULP processing, there are
at least two more data copies in an optimized software stack
related to the DMA transactions from NIC and storage devices.
Modern CPUs implement Direct Cache Access technology
(e.g., Intel DDIO [39] and ARM Cache Stashing [40]), routing
DMA data through the Last-Level Cache (LLC) to minimize
memory bandwidth usage. However, if the usage distance of the
DMA data is long – which is often the case for ULP processing
as the software stack and DMA accesses are asynchronous –
the DMA data may leak to DRAM before the CPU utilizes
it [41, 42].

0

20

40

60

80

100

0% 1% 2% 3% 4% 5%

Ba
nd

w
id

th
 (G

bi
t/

s)

Packet Drop Percentage

SmartNIC https httpHTTPS (SmartNIC) HTTPS (CPU) HTTP

Fig. 2. Achievable bandwidth over an encrypted connection for SmartNIC and
CPU under packet drops.

III. MOTIVATION

In this section, we discuss several observations that informed
SmartDIMM’s design. The observations are either generally-
accepted design decisions discussed in previous studies or made
by experimental data we collected.
Observation 1: ULP offload on SmartNIC can be sub-
optimal. Ethernet is the backbone of datacenter networks,
where packet loss and reordering are expected. It is the job
of the TCP protocol to recover from these events and provide
reliability to the upper layers. ULP processing takes place
before/after TCP processing on the TX/RX path, while the
SmartNIC sees TX/RX data after/before it is processed by
the TCP stack. Offloading a ULP to a SmartNIC without
also offloading TCP/IP processing limits the types of data
transformations that can be performed. In particular, SmartNICs
require that the ULP preserves the payload size as shrinking or
expanding the payload interferes with the TCP state machine.
This makes it challenging to offload non-size preserving ULPs
such as (de)compression to a SmartNIC [26].

NVIDIA SmartNICs implement autonomous TLS offloading,
which speculatively offloads symmetric cipher computations to
the NIC while running the TCP/IP stack on the CPU [16, 26].
As shown in Fig.1b, autonomous SmartNIC ULP offloading
requires the ULP library to skip performing the offloaded
operation in software, passing the plaintext payload down
the network stack before the NIC performs the accelerated
computation. The SmartNIC driver performs hardware re-
synchronization and falls back to CPU computation in the
presence of packet reordering or loss. Using an NVIDIA
ConnectX-6 SmartNIC, we offload TLS computation of an
HTTPS stream to the NIC and inject packet drops using
a programmable switch. For detailed information on our
experimental methodology, refer to Sec.VI. Surprisingly, as
shown in Fig.2, we see the same, or even lower, throughput
when offloading TLS to the SmartNIC. We suspect that this is
due to the performance improvement of AES-NI in Xeon
CPUs [43]1. More importantly, the benefits of SmartNIC
offloading fade away as soon as there are packet drops.

1Bluefield 2 SmartNIC and Intel Xeon Gold CPU we tested on were launched
the same year (2020)

Fig. 3. HTTPS memory bandwidth utilization normalized to HTTP for different
numbers of concurrent connections.

Observation 2: PCIe-based offload is suitable for latency-
insensitive, coarse-grain offloads. PCIe accelerators, such as
Intel QuickAssist[44], can offload costly key derivations using
RSA [45] and ECDH [46], as well as symmetric encryption
and decryption operations, from the host CPU. However,
the need for frequent PCIe transactions to transfer data and
notifications between the accelerator and the CPU renders
PCIe accelerators less appealing for latency-sensitive data
transformations, especially when the offload size is small.
Additionally, the notification mechanism between the CPU
and accelerator, whether interrupt or polling, significantly
bottlenecks PCIe-attached acceleration [47, 48]. Due to these
overheads, various techniques and system configurations have
been proposed to minimize PCIe traversals [11, 49–53].
Observation 3: DIMM is on the path of ULP processing
at high LLC contention. Direct Cache Access technology
does not always eliminate DRAM access, and during LLC
contention, DRAM accesses become inevitable [41, 42, 54, 55].
This issue is further compounded by the presence of ULPs.
Since buffers are DMAed to/from the LLC without being
immediately consumed, they are at risk of being evicted back
to DRAM [25].

Fig.3 compares the memory bandwidth utilization of HTTP
and HTTPS web servers with varying numbers of concurrent
connections. As the number of connections increases, the
memory bandwidth utilization of the HTTPS web server
significantly rises, showing up to a 2.5× increase compared
to a server performing equivalent encrypted file transfers. The
cache thrashing caused by ULP processing not only reduces
the packet processing rate but also causes interference with
co-running applications and generates unnecessary DRAM
bandwidth.
Observation 4: ULPs are often incrementally computable.
Many ULP data transformations can be computed over arbitrary
byte ranges of a message as it is sequentially received
or transmitted from or to the network. For example, the
AES-GCM cipher can encrypt or decrypt messages without
performing cipher block-chaining operations. Any range of
bytes can be XORed with a pre-generated stream to produce
the (de/en)crypted message data. In the case of (de)compression,
the LZ77-based deflate algorithm consumes or emits an input or
output stream byte by byte, allowing streaming (de)compression

operations over any sequentially received or transmitted portion
of a ULP message.

This property enables ULP processing to commence even
before the complete ULP message has transitioned from or to
the application layer of the network stack, as is often the case
when a single message is encapsulated across multiple TCP
segments.
The Case for In-Memory Acceleration of ULPs. Leveraging
the commercial availability of DIMM-based near-memory
processing products [31], we introduce SmartDIMM. This
innovation enables the use of DIMMs as an alternative location
for ULP computation. SmartDIMM embodies a bump-in-
the-DDR architecture that can be dynamically configured to
perform ULP computations within the buffer device of DIMMs
as data traverses through the DDR channels.

The following section details how we implement Smart-
DIMM through a co-design of hardware and software.

IV. SMARTDIMM ARCHITECTURE

We design SmartDIMM for accelerating ULPs with the
following goals in mind:

• Adaptive, per message offload: SmartDIMM enables the
software stack to adaptively switch between offloading
ULPs to the near-memory accelerator or on-loading ULP
processing to the CPU based on the current LLC miss
rate at the granularity of 4KB OS pages.

• Inline offload: SmartDIMM removes the need for a
synchronization mechanism between the CPU and near-
memory accelerator in the common case.

• Minimized data movement: SmartDIMM does not intro-
duce extra memory copies when processing ULPs and
piggybacks on the existing memory copies in the software
stack to perform the offload.

• Application readiness: SmartDIMM does not require
new programming interfaces and leverages the existing
programming style and Linux APIs.

• Preserved processing order: SmartDIMM preserves the
processing order within the network stack and non-
speculatively offloads ULPs to the near-memory accelera-
tor.

• Minimal changes to the processor and DRAM architecture:
SmartDIMM works with current CPU architectures with-
out requiring hardware support. Additionally, SmartDIMM
leaves the DRAM devices unmodified, isolating changes
to the DIMM’s buffer device.

• Preservation of host accesses to DRAM: SmartDIMM
minimizes changes to the datapath for reads and writes
from the host, preserving performance for regular accesses.

We design SmartDIMM to satisfy the above goals by
implementing the Compute Copy (CompCpy) API. In this
section, we first explain the offload model of CompCpy and then
explain the hardware and software architecture of SmartDIMM
that realizes CompCpy.

Cache DRAMBuffer Dev

sbuff

dbuff
dbuff dbuff

sbuff
DSA

CPU SmartDIMM

copy
copy

Scratchpad
DDR4

intercept

comp

Copy Intercept Compute
(a) Compute Copy operation

Cache DRAMBuffer Dev

dbuff
dbuff dbuff

DSA

CPU SmartDIMM

DDR4

intercept
recyclewriteback

DSA

Scratchpad

Writeback RecycleIntercept
(b) Self-Recycle operation

Fig. 4. CompCpy inline offload model.

A. Offload Model

At a high level, as a source buffer (sbuff) is copied to a
destination buffer (dbuff), sbuff is fed to a Domain-Specific
Accelerator (DSA), and the result is stored on SmartDIMM’s
buffer device. We introduce CompCpy, a modified memory
copy API that performs the above sequence of actions and
hides the hardware implementation details from the user.

Before starting an offload, the user must register both sbuff
and dbuff to SmartDIMM as acceleration ranges and flush
sbuff to DRAM. SmartDIMM registers a range at 4KB OS
page granularity. SmartDIMM only performs computation on
the data accessed within the acceleration range; otherwise,
SmartDIMM will operate in non-acceleration mode like a
regular DIMM. Note that the software stack periodically
measures the LLC contention and enables SmartDIMM offload
on-demand. Therefore, when SmartDIMM offload is enabled,
sbuff is likely to be in DRAM and the overhead of the cache
flush is minimal. Our experimental results show that flushing
4KB data is 50% faster when the data is already in DRAM.
While registering the addresses, the application also writes any
configuration and context (e.g., the key and initialization vector
for TLS offload) required for computation to SmartDIMM.

Next, the CompCpy API will copy sbuff to dbuff (Fig.4a).
As sbuff is read from DRAM, SmartDIMM intercepts the data
that passes through the DIMM buffer device and sends it to
the DSA. Since the CPU memory controller synchronously
controls SmartDIMM’s local DRAM devices, we cannot write
the output of the DSA directly to DRAM. Thus, the DSA
stores the results in a temporary on-chip memory called the
Scratchpad. This staging buffer is essential to avoid an

Algorithm 1: Force-Recycle method reads the list of pending
pages from SmartDIMM’s MMIO config space and explicitly
flushes those addresses to DRAM. This method is rarely called.

1 Force-Recycle(requiredToBeFree)
2 pendingList = readPendingList(SmartDIMMConfig)
3 for page in pendingList do
4 flush(page, 4KB)
5 freed += 1
6 if freed > requiredToBeFree then
7 break
8 end
9 end

additional DIMM-side memory controller.
Letting the CPU memory controller manage SmartDIMM’s

address space provides four Benefits: (B1) the OS can manage
SmartDIMM’s address space like any regular DIMM, (B2)
SmartDIMM’s capacity counts towards the total system mem-
ory, (B3) memory access latency to the non-acceleration range
is not increased, and (B4) the hardware complexity of the
buffer device is reduced by precluding an additional DIMM-
side memory controller and CPU-DIMM synchronization
mechanisms.

B. Scratchpad Recycling: Self- vs. Force-Recycling

The offload model, as explained in Sec.IV-A, introduces
a challenge: the Scratchpad space is limited and requires
frequent recycling. To recycle a page in the Scratchpad, its
contents must be written back to the corresponding addresses
in DRAM. The offload model of SmartDIMM capitalizes on
an opportunity to automatically recycle buffers by utilizing
the inevitable writeback of dbuff cachelines to DRAM, as
shown in Fig.4a. Specifically, when a write Column Address
Strobe (wrCAS) to a cacheline stored in Scratchpad is
received at the buffer device (triggered by an LLC writeback),
SmartDIMM replaces the wrCAS data with the data stored in
the Scratchpad and invalidates the corresponding cacheline
in the Scratchpad. Once all the cachelines of a page are
written back to DRAM (i.e., invalidated), the Scratchpad
page is freed and becomes available for another offload. This
automatic recycling of the Scratchpad is referred to as
Self-Recycle.

While LLC writebacks can opportunistically recycle
Scratchpad buffers, there is no guarantee that the buffers
will be recycled in time. In the rare instance that the
Scratchpad is full during a new offload attempt, a Force-
Recycle function is invoked by CompCpy. As detailed in
Algorithm 1, the Force-Recycle method reads the addresses of
pending pages from SmartDIMM and explicitly issues write-
requests to the physical address ranges of those pending pages.
Sec.VII-A presents experimental evidence showing that calls
to Force-Recycle are infrequent. This low frequency is due to
SmartDIMM being utilized primarily when LLC contention is
high.

 A

 CS
 BG
 BA

 ACT
 wrCAS

 wrData

DDR PHY

 {BG,BA,Col}_Rd

Slot
Decoder

Row
BG,BA

Col

Bank
Table

ScratchpadAddr

Translation
Table

MIG PHY

Rows

BGBAs

ScratchpadAddr

 {BG,BA,Col}_Wr

 rdCAS

 Arbiter

physical address

Addr Remap

insert entry

Addr/data

ctrl &
notification to

Host

scratchpad data

Scratch
pad

to
DRAM

selectRd

selectWr

rdData

wrData

Config
Mem

rdData

result

DSA

match

ctrl ctrl

Controller

Fig. 5. SmartDIMM’s buffer device architecture.

C. Hardware Architecture

SmartDIMM is solely controlled by read (i.e., read Column
Address Strobe (rdCAS)) and write (i.e., write Column Address
Strobe (wrCAS)) commands received at the DIMM’s buffer
device. SmartDIMM integrates the following logic within the
buffer device: an Arbiter, Scratchpad, DSA, Config
Memory, DDR PHY, and MIG PHY. These components are
highlighted in red in Fig.5. The Arbiter decodes rdCAS
and wrCAS commands from DDR PHY, determines whether
the commands target SmartDIMM’s MMIO config space or
acceleration range, and coordinates near-memory computation
and recycling of Scratchpad. Fig.6 summarizes the decision-
making process of the arbiter logic upon receiving a CAS
command. The flowchart in Fig.6 is referenced while discussing
the hardware and software architecture of SmartDIMM in this
section and in Sec.IV-D.
DDR PHY and MIG PHY provide high-speed physical inter-

faces to the host memory controller and SDRAM, respectively.
The DDR PHY buffers 512-bit data bursts received from the
host memory controller and forwards them to the Arbiter.
The MIG PHY then relays the DDR4 signals from the DDR
PHY to the DRAM chips to perform memory accesses. Similar
to Samsung’s AxDIMM [56], SmartDIMM’s buffer device op-
erates at one-fourth the DRAM clock frequency. Consequently,
the DDR PHY encodes four DRAM commands within a single
SmartDIMM clock cycle, while the MIG PHY serially issues
them on consecutive DDR4 clock cycles to the DRAM chips.
Therefore, each clock cycle contains four slots, each decoding
a different DDR command [57]. The command in slot 0 is
issued to the DRAM chips first, followed sequentially up to
the command in slot 3.

As illustrated in Fig.5, DDR PHY sends Address (A), Chip
Select (CS), Bank Group (BG), and Bank Address (BA) signals
to the Slot Decoder. The Slot Decoder then decodes
the commands within each slot, generates Row, BA, and BG for
each respective slot, and forwards them to the Bank Table.

The Bank Table is a memory array consisting of N
entries, where N represents the total number of banks in each
SmartDIMM rank. Each entry in the Bank Table records
the ID of the active row within its corresponding bank. The
contents of the Bank Table are updated upon receiving a

Yes NoMatch in
TranslationTable?

Yes

RdCAS/WrCAS
Address

Addressing
Config Mem?

Regular DRAM
Access

CompCpy
In Progress?

No

Yes
Ignore/Drop Data

(S1) (S2)(S3)

(S18)

Intercept Data &
Send to DSA

MMIO Write Config
Data

RdCAS/WrCAS

No
WrCAS

RdCAS

(S17)

(S14)

(S15)

(S16)

Compute Started?

(S4)

RdCAS/WrCAS

NoYes

Compute Done?

(S8)

RdCAS/WrCAS

Yes

RdCAS

WrCAS

Retry Read

Ignore Write

RdCAS/WrCAS
(S12)

(S7)

(S13)

WrCAS

Incrementally
Compute

(S6) (S5)RdCAS

No

RdCAS

Read from SP
(S10) (S9)

Recycle
Cacheline

WrCAS

(S11)

Fig. 6. Arbiter logic operation. The gray symbols show the unlikely states.
A read or write command to a cacheline with pending computation is ignored
(S7 and S13). S13 utilizes the ALERT_N signal to inform the memory controller
to retry the rdCAS.

RAS command (to activate a row) or a Precharge command (to
close a row). For example, if a RAS command targeting BGBA
8 with Row ID 10 is received, the value 10 will be recorded
in the eighth row of the Bank Table.

When a rdCAS or wrCAS command is received from
DDR PHY, the SmartDIMM must determine whether the CAS
command targets an acceleration range (S1 in Fig.6). To
achieve this, the Row ID from the CAS is retrieved from
the Bank Table and provided to an Addr Remap module,
along with BG, BA, and Col information, to regenerate the
physical address of the CAS command. Knowing the physical
address is essential because it is impossible to determine the
range of addresses within an OS page solely with knowledge
of BG, BA, Row, and Col. The physical address is then
input into a Translation Table. If a match is found
in the Translation Table, it returns a mapping to an
offset within a Config Memory (S3→Yes in Fig.6) or
Scratchpad (S3→No in Fig.6).

The size of the Translation Table is contingent on
the number of pages and entries in the Scratchpad and
Config Memory. We have configured the Scratchpad
and Config Memory sizes to minimize the occurrence of
Force-Recycle method calls. Our experimental results indicate
that sizing the Scratchpad and Config Memory to 2048
pages effectively leads to nearly zero Force-Recycle method
calls (§VII-A). The Translation Table operates at page
granularity for mapping memory addresses, thus requiring
4096 translation entries to cover both the Config Memory
and Scratchpad. It is important to note that a single
Translation Table is utilized to maintain mappings for
both the Scratchpad and Config Memory, differentiated
by a single-bit flag.

A naive implementation for the Translation Table
involves using a Content Addressable Memory (CAM) to

match physical page numbers in a single cycle. However,
CAMs are expensive and power-hungry [58], and given that the
Translation Table is accessed every clock cycle, a CAM
implementation could exceed the power and thermal limits of
the buffer device in the DIMM. Instead, we implement the
Translation Table as a 3-ary cuckoo hash table [59],
utilizing three distinct hash functions for indexing. It has
been experimentally demonstrated that at low occupancy
(less than 50%), a 3-ary cuckoo hash table typically inserts
a translation either on the first attempt or with a single
displacement. Furthermore, at an occupancy of less than 50%,
the probability of insertion failure is effectively zero [60]. To
ensure low occupancy, we size the Translation Table
to be three times larger than the total required entries (i.e.,
12K entries), maintaining the occupancy of the cuckoo hash
table below 33% and thereby reducing the probability of
displacement. Additionally, we incorporate an 8-entry CAM
array for immediate mapping insertions and execute cuckoo
hash table insertions outside the critical path.

A new entry is inserted into the Translation Table
when the user registers new source and destination pages for
acceleration (S17 in Fig.6). SmartDIMM features an MMIO
register designed to capture the source page number, destination
page number, and any additional context required for the
offload, all within a 64-byte MMIO write. Upon receiving
a write to the MMIO register, the SmartDIMM registers both
the source and destination pages by creating translation entries
in the Translation Table for each. The translation entry
for the source page includes the address of the destination
page (or multiple pages if the computation does not preserve
size) and an offset in Config Memory where the context for
processing the source page is stored. Software can further
write additional context into Config Memory using the
same mechanism. The translation entry for the destination
page specifies a Scratchpad offset where the DSA’s output
(results) will be stored.

The Scratchpad is a local SRAM implemented in Smart-
DIMM to temporarily store DSA’s output on the buffer device
without writing it back to the DRAM chips. This design allows
the CPU to manage the entire SmartDIMM address space,
akin to a regular DIMM. The Scratchpad is organized as a
64-byte addressable memory array and allocated at 4KB page
granularity. Config Memory is also a 64-byte addressable
block memory that holds a fixed context space for each source
page (sbuff) upon which the DSA operates. The size of the
context is dependent on the application; for instance, the context
size for TLS offloading is 1KB per source page (Sec.V-A).

D. Software Architecture

Algorithm 2 outlines the high-level implementation of
CompCpy. CompCpy extends the standard memory copy API.
Beyond merely copying a source buffer (sbuff) to a destination
buffer (dbuff), CompCpy also configures SmartDIMM to
process the data from the source buffer before saving it to the
dbuff’s physical DRAM addresses. Prior to initiating inline
acceleration, CompCpy must verify whether the limited space of

Algorithm 2: CompCpy inline acceleration.

1 global variable: freePages = -1
2 CompCpy(uint8_t * dbuff, uint8_t * sbuff, uint16_t size, uint8_t

*context, bool ordered)
3 // Check to ensure data and dbuff are 4KB page aligned
4 if !PageAligned(dbuff) OR !PageAligned(sbuff) then
5 return "Not Aligned"
6 end
7 lock.lock()
8 if freePages <= (size / 4KB) then
9 freePages = SmartDIMMConfig[0]

10 // Unlikely condition
11 if unlikely(freePages <= (size / 4KB)) then
12 Force-Recycle(size)
13 end
14 end
15 // reserve the required pages
16 freePages -= (1 + size / 4KB)
17 lock.release()
18 // flush sbuff to DRAM
19 flush(sbuff, size)
20 // register both sbuff and dbuff address ranges in acceleration range
21 for pages in sbuff and dbuff do
22 register(sbuff, dbuff, context)
23 end
24 if ordered then
25 for i in (0, (size / 64)) do
26 memcpy(dbuff, sbuff, 64)
27 membar()
28 end
29 else
30 memcpy(dbuff, sbuff, size)
31
32 USE(uint8_t* dbuff)
33 flush(dbuff)
34 return dbuff

the Scratchpad would preclude SmartDIMM from accepting
a new offload.

CompCpy monitors the available Scratchpad space using
a global variable (freePages in Algorithm 2), which is
protected by a lock. CompCpy lazily updates the freePages
variable only when the number of pages needed for an offload
exceeds the current value of freePages (lines 8–9). Due
to the Self-Recycling facilitated by LLC writebacks (see
Sec.IV-B), our experiments indicate that the Scratchpad
rarely runs out of space. On the rare occasion that there is
not enough space in the Scratchpad, CompCpy invokes
the Force-Recycle method to free up some pages in the
Scratchpad (see Algorithm 1). After securing the necessary
number of pages in the Scratchpad, CompCpy registers
the pages spanned by sbuff and dbuff as acceleration ranges
by writing their page numbers and the required context for
offloading into the MMIO config register (lines 21–22).

SmartDIMM receives memory read and write requests at a
64-byte granularity from the CPU. Typically, the CPU memory
controller reorders these requests before dispatching them
to DRAM. If DSA needs to process data in the order it
was generated by the application, then CompCpy must insert
a memory fence between each 64-byte segment during the
memory copy to SmartDIMM. The if condition on line 24 of
Algorithm 2 checks for the ordering requirement specified as

an argument to CompCpy and, if necessary, breaks the memory
copy into 64-byte segments, inserting a memory barrier between
each (lines 25–28).

DSA processes 64-byte data chunks as they are read
from DRAM (S6 in Fig.6) and stores the results in the
Scratchpad. Before an application can read the result, it
must ensure that DSA has completed the computation. A
straightforward, yet naive, approach would require applications
to poll the dbuff to confirm completion. However, we observed
that the time lag between the first read command from sbuff and
the first write command to dbuff usually provides enough buffer
to allow for the completion of a ULP operation on a 64-byte
cacheline. This slack arises from the batching of write requests
in the memory controller, the intricacies of the cache coherency
protocol, and the overhead of toggling DDR channels between
read and write modes. Our measurements using Samsung’s
AxDIMM on an Intel Broadwell server indicate this time
budget exceeds 1µs. Consequently, rather than resorting to
polling, we optimistically assume that SmartDIMM completes
the computation on a cacheline before its consumption (i.e.,
before being read by the CPU). In the rare instance that
the computation is not finished, SmartDIMM employs the
ALERT_N signal from the DDR standard [61] to prompt the
memory controller to retry the read request (S13 in Fig.6).

The gray-shaded states in Fig.6 represent scenarios that are
unlikely to occur. One such unlikely event is if a cacheline in
dbuff is written back before DSA completes its computation.
In this situation, the wrCAS command is disregarded, and the
cacheline in the Scratchpad is not recycled (S7 in Fig.6).
Consequently, the computed cacheline must be read from the
Scratchpad when the dbuff is subsequently accessed (S10
in Fig.6).

E. Discussion

The offload model described and implemented in this section
is meticulously designed to be compatible with off-the-shelf
CPU and DRAM components. Given the opportunity to modify
the memory controller and introduce new DDR commands, it
would be possible to devise a more optimized offload model that
could eliminate cache pollution entirely. Referring to Fig.4a,
a DDR command that directs DRAM data solely to DSA–
without bringing data to the CPU memory controller – could
conserve DDR data bandwidth and avoid populating the on-chip
caches. In such a setup, the memory controller would maintain
the addresses of the currently offloaded memory in a hardware
table (akin to extended directories [62]), assigning a timer value
for eventual eviction back to DRAM. This eviction would entail
issuing a special DDR command to SmartDIMM, prompting
the writeback of the Scratchpad’s data to DRAM.

The current CompCpy API supports offloading ULPs that
do not utilize a zero-copy software stack. While zero-copy
software stacks can enhance performance, they often compli-
cate buffer recycling within the kernel, disrupt the separate
development of ULPs and applications, and pose security risks
for communication [63–65]. Nonetheless, CompCpy could be
expanded to incorporate near-memory acceleration on DMA

12B

4K
B

AES-NI

AES-NI

16B

EIV

H

partial tag

tag
(init to EIV)

Scratchpad

H8

H, H4, ...

Config Mem
IV,Key,EIV

Cipher
Text

Incr AES

rdData [511:0] GHASH (partial) tag

CPU

...

2K
B

H4 H252

Pipelined GF Multiplier

SmartDIMM

TLS
DSA
IV

0128

{IV,031,1}

KeyIV

MMIO

H

H,H4,H8,...

H256,H260,...
IV,Key,EIV

... TL
S

re
co

rd

Fig. 7. Encryption offload of an example TLS record smaller than 8KB and
larger than 4KB to SmartDIMM. We use the same notations as explained in [66].

accesses. For instance, a CompCpy augmented with Compute
DMA support could transform data while an I/O device is
DMAing data to or from SmartDIMM.

Overall, SmartDIMM is well-suited for accelerating oper-
ations involving memory-resident data and exhibiting poor
cache behavior, such as streaming operations. The current
incarnation of SmartDIMM provides an end-to-end near-
memory acceleration framework compatible with unmodified,
commodity hardware and software stacks. Introducing new
DDR commands to allow SmartDIMM direct access to DRAM
and expanding interfaces beyond the CompCpy API detailed
in this work would broaden the potential application domains
for SmartDIMM.

V. TLS & COMPRESSION OFFLOAD ON SMARTDIMM

The CompCpy offload model imposes the following require-
ments on the design of the DSA and its corresponding offload
software: Firstly, the latency of DSA should align with the time
constraints of consecutive rdCAS and wrCAS commands to
the same cacheline, to minimize notification overhead (§IV-D).
Secondly, each CompCpy call must be stateless, with any nec-
essary context or state transmitted to the DSA by the CPU via
MMIO writes prior to the commencement of an offload. Thirdly,
the required state for each offload should be contained within
a single Config Memory page. This section explains the
process of offloading TLS (de/en)cryption and (de)compression
to SmartDIMM, adhering to the aforementioned stipulations. It
is important to note that our prototype of SmartDIMM is based
on Samsung’s AxDIMM, which operates in a single channel
mode. Consequently, in Sec.V-A and Sec.V-B, we presume
that 4KB of physical addresses are sequentially allocated to
a single SmartDIMM. Sec.V-D discusses the effects of fine-
grain memory channel interleaving on SmartDIMM’s offload
scheme.

A. Transport Layer Security (TLS) Protocol

The physical proximity of the the CPU to SmartDIMM
enables a fine-grain division of operations between CPU
and SmartDIMM. Fig.7 illustrates the DSA architecture and
the interactions between the CPU and SmartDIMM when

offloading TLS. As illustrated in the figure, the hash subkey (H)
and encrypted initialization vector (EIV) are computed on the
CPU and provided to the TLS DSA via an MMIO write to the
Config Memory page associated with the sbuff pages. This
is a crucial design decision since offloading the computation
of H and EIV to SmartDIMM complicates the DSA design
and provides no benefit. This is because the CPU can compute
H and EIV by executing a single AES-NI instruction operating
on an immediate value without any data dependencies. Since
rdCAS commands of a sbuff range can be received out of order
at SmartDIMM, the DSA pre-computes the ith powers of H in
strides of 4 to remove the dependency chain between GHASH
calculations of different 64-byte cachelines within the sbuff
range.

The pre-calculation of powers of H for the binary Galois
Field of 2128 elements (GF Multiplier) starts as soon as the
sbuff is registered as an acceleration range. The powers of
H are stored in the Config Memory and are later read by
the GHASH module to calculate the partial authentication tag.
The final tag should be stored in the trailer of the TLS record.
On each rdCAS from the sbuff range, the TLS DSA reads
the partial tag from the Scratchpad and XORs it with the
output of the GHASH module before storing the result back
to the Scratchpad. The final value of tag will be stored in
the trailer after the entire sbuff is encrypted.

B. Layer-5 (De)Compression Protocol

The implementation of the Deflate compression algorithm in
SmartDIMM is a specialized adaptation of the fully pipelined
hardware implementation as explained in [67]. SmartDIMM
utilizes Config Memory to store candidates for matching
substrings. This Config Memory is designed as an 8-bank
memory array, each equipped with eight read and write ports.
As described in prior work [67], deflate compression can be
parallelized by executing the algorithm on consecutive bytes
within a contiguous parallelization window. We have configured
this window to 8 bytes. Although increasing the size of the
parallelization window marginally improves the compression
ratio and bandwidth, it also exponentially raises the memory
requirements and the logic complexity of the Deflate DSA [68].

In each clock cycle, SmartDIMM compresses 64 bytes of
data in a best-effort manner. This means that if bank conflicts
occur in the Config Memory, the candidate substrings from
the affected bank will be discarded. Additionally, as CompCpy
primarily focuses on small-sized ULP message offloads, we
have designed the Config Memory to accommodate a hash
table covering a 4KB window. When a new substring candidate
is inserted and the hash table is full, the oldest substring
gets replaced. Such design choices may slightly reduce the
compression ratio but are intended to simplify the design and
guarantee deterministic latency for the Deflate DSA. Even
with a moderate compression ratio, the Deflate DSA in Smart-
DIMM can significantly mitigate data movement overhead in
transmission-intensive network applications, thereby saving on
DRAM, PCIe, and Ethernet bandwidth.

C. Software Stack

Figure 8 illustrates the software stack that facilitates adaptive
TLS offloading on SmartDIMM. SmartDIMM includes a driver
that initializes a character device and maps the physical memory
space of SmartDIMM to kernel virtual addresses. These virtual
addresses can then be allocated to userspace applications as
needed. In our implementation, the userspace library manually
allocates and deallocates ranges of addresses on SmartDIMM
from the driver. Ideally, SmartDIMM’s address space would
be managed by the OS memory manager, and the allocated
addresses would be utilized by the application to perform
CompCpy.

As depicted in Figure 8, we have modified the OpenSSL
AES-GCM Cipher engine to selectively offload TLS to Smart-
DIMM or process it on the CPU based on the level of LLC
contention. LLC contention is assessed by frequently sampling
the miss rate of the LLC, with the contention threshold set
as a configurable parameter. Cache partitioning could affect
this threshold, and service providers are advised to adjust it
according to their specific system configurations.

Compression is made more complex by the fact that the
compressed size is not predetermined. Consequently, we register
the same number of pages for the destination buffer as for
the source buffer. To further streamline the software stack
and reduce the complexity of the Deflate DSA, we compress
exclusively at 4KB page granularity. This approach necessitates
multiple CompCpy calls for messages larger than 4KB, with
each compressed page being individually written to the TCP
socket. Given that the maximum transmission unit size of TCP
is smaller than 4KB, this design choice does not adversely
affect the TCP layer’s performance.

Although we have discussed TLS offloading within the
context of the userspace OpenSSL framework, the addition of
in-kernel TLS (e.g., Linux kTLS [69]), allows SmartDIMM to
perform offloading in kernel space as well.

The existing TCP ULP infrastructure [70] in the Linux
kernel facilitates the verification of TLS offloading prior to
copying received packets into userspace, offering an entry for
offloading to accelerators in addition to SmartNIC. Furthermore,
TCP ULP is invoked before and after the TCP layer during
transmission and reception, respectively. This makes it suitable
for SmartDIMM acceleration to be initiated before or after
the packet is transferred to the remaining network stack or
userspace.

D. Memory Channel Interleaving

Multi-channel memory systems in modern servers typically
utilize fine-grain interleaving, with only 1-4 consecutive
cachelines mapped to the same DIMM [71]. Such memory
channel interleaving results in internally fragmented ULP
messages for non-size preserving ULPs, potentially impairing
the performance of data transformations that depend on
the state generated from previously processed data (e.g.,
LZ77 dictionary-based (de)compression used in the Deflate
algorithm). To mitigate this, 4KB OS pages corresponding
to source and destination buffers for such ULPs can be

SmartDIMM offload

memremap()

char device

init()

CompCpy

vaddr

mmap()

kernel vaddr

SmartDIMM_MemAlloc

CPU onload

OpenSSL AES-GCM Engine

Network Stack

LL
C

 C
on

te
nt

io
n?

no

yes

EV
P_

C
ip

he
r_

IF
s(

)

O
pe

nS
SL

 A
PI

range

write
Networking Subsystem

read

Ngnix OpenSSL Library
User Space Kernel Space

SmartDIMM
Driver

user
vaddr

SS
L

R
ea

d/
W

rit
e

AP
I

Fig. 8. Software stack for adaptive TLS offloading to SmartDIMM. Modifications
and additions to the default software stack are highlighted in blue.

mapped to a single memory channel. This can be achieved by
operating SmartDIMM in single channel mode, flex channel
mode [72], or by utilizing a memory channel interleaving-aware
memory mapping in the software stack [73, 74]. Hardware
schemes that enable information sharing between DIMMs
across channels [75, 76] may also be employed in these
scenarios.

SmartDIMM remains resilient to fine-grain memory channel
interleaving for size-preserving ULPs. The only additional
requirement is for each SmartDIMM to have its own copy
of the configuration data, such as keys and IVs for TLS. We
address this requirement by writing the configuration data to
each SmartDIMM during the source buffer registration step.

VI. METHODOLOGY

To evaluate SmartDIMM, we take two approaches: an actual
FPGA implementation and emulation. For the actual FPGA
implementation, we use AxDIMM [31], a DIMM-based near-
memory processing product from Samsung. We implement
SmartDIMM as explained in Sec.IV on the AxDIMM FPGA
and integrate the DSA discussed in Sec.V to support TLS and
compression offloads. We hypothesize that the performance of
TLS offload on SmartDIMM is equal to performing a CompCpy
(without actual implementation of SmartDIMM in hardware)
and commenting out the software functionalities to be offloaded.
We validate this assumption using our AxDIMM prototype by
showing that the TLS offload hardware can sustain the DDR
line rate. Pismenny et al. [26] used a similar methodology for
evaluating the performance of ULP offload on a SmartNIC.
We implement the complete software stack in our emulation
methodology, including the SmartDIMM kernel driver to
support userspace offloads, page registration in CompCpy, lock
acquisition, and cache flushes. In our experimental setup, we
use two servers equipped with Intel Xeon Scalable Gold 6242
CPUs, 6× DIMMs of 16 GB memory at 3200 MHz (96 GB)
connected using NVIDIA/Mellanox BlueField-2 ConnectX-6
100Gbe DPUs.

We compare the performance of SmartDIMM against three
configurations when running an Nginx [77] web server with

Sbuff
Sbuff + 64

Sbuff + 128
…

So
ur

ce
 B

uf
fe

r R
an

ge
De

st
in

at
io

n
Bu

ffe
r R

an
ge

1 2 3 5 6 7
Relative Time (us)

1024

3072Pa
ge

 N
um

be
r

2048

4
0

Writes Reads

-

-

-

-

- 4096

-

-

-

-

5120

6144

7168

8192

Fig. 9. Memory traces collected from SmartDIMM when having 4 cores
concurrently offloading computation to memory. The read commands belong
to the source addresses in the current CompCpy and write commands belong
to self-recycle of destination buffer addresses accessed earlier.

ten threads: a CPU configuration that executes ULPs on the
CPU2, a QuickAssist configuration that offloads the ULP to an
Intel QuickAssist 8970 PCIe Adapter [44], and a SmartNIC
configuration that offloads TLS to an NVIDIA ConnectX-6
SmartNIC [79]. Note that the SmartNIC configuration cannot
offload (de)compression because these operations are non-
size preserving. We experimentally find 10 threads to be the
minimum number required to saturate the link with unencrypted
HTTP responses. We therefore attribute any performance
degradation to TLS encryption operations performed by the
design under test. The workload generator runs the wrk [80]
traffic generator, maintaining 1024 persistent connections to
make HTTP requests.

Unless stated otherwise, we use the following configuration
parameters for SmartDIMM: 8MB Scratchpad size, 8MB
Config Memory, 4KB page size, and 12288 number of
entries in the Translation Table (3-ary cuckoo hash
table with 3× more entries). In the experiments, we consider
scenarios with high LLC contention (i.e., a large number of
connections and high network rates); otherwise, it is optimal
to run ULPs to the CPU.

VII. EVALUATION

A. Effectiveness of the Offload Model

Figure 9 presents the rdCAS and wrCAS traces collected
from the SmartDIMM prototype when four cores concurrently
execute CompCpy calls. Each red and green dot represents
a 64-byte read or write request from/to DRAM, respectively.
Due to the sparsity of the addresses in each CompCpy call
(spaced 32MB apart), it is not immediately apparent that the
addresses are incrementally increasing. A magnified section of
the trace shows the monotonic address increase throughout a
CompCpy call.

2CPU configuration uses Intel Advanced Encryption Standard New Instructions
(AES-NI) [78] to accelerate encryption

0.0

0.5

1.0

1.5

2.0

0 64 128 191 255 319 383 446 510 574 638 701 765 829 893

Sc
ra

tc
hp

ad
 M

em
or

y
O

cc
up

an
cy

 (M
B)

Time (ms)

4-ways (10MB) 8-ways (20MB) 12-ways (30MB) 16-ways (40MB) 20-ways (50MB)

Fig. 10. Scratchpad utilization for different LLC provisionings. In each
configuration shown, Scratchpad utilization reaches an equilibrium state
in which writebacks from the LLC recycle pages in the Scratchpad, freeing
space for new offloads. The equilibrium state is reach at a lower occupancy
when LLC is more contended.

Figure 10 illustrates the Scratchpad occupancy in MB
during the trace collection as shown in Fig.9. We employ Cache
Allocation Technology (CAT) [81] to reduce the size of the
LLC by limiting the number of ways utilized by CompCpy.
As illustrated, Scratchpad utilization quickly stabilizes at
an equilibrium after the start of the offload, where writebacks
from the LLC recycle pages in the Scratchpad, thereby
freeing space for new offloads. As outlined in Sec.IV-B, Force-
Recycles become rare once this equilibrium is achieved, with
writebacks efficiently managing the self-recycle operations.

As anticipated, reducing the size of the LLC results in
a proportional decrease in Scratchpad occupancy due to
increased LLC contention. For instance, with a contended
50MB and 10MB LLC, the occupancy of the Scratchpad
remains below 2MB, and 500KB, respectively.

B. Performance Comparison

Figure 11 shows the requests per second (RPS), CPU
utilization, and memory bandwidth utilization of an Nginx
HTTP server providing web pages to clients over a secure
connection (i.e., uses TLS), where TLS is executed on
SmartNIC, QuickAssist, and SmartDIMM. All the data points
are normalized to the CPU configuration.

As shown in the figure, SmartDIMM delivers 21.0% and
35.8% higher RPS than the CPU configuration for TLS offload
of 4KB and 16KB message sizes, respectively. At the same
time, SmartDIMM reduces the CPU and memory bandwidth
utilization of the server by 21.8% and 49.1% for 4KB TLS
message offloading. Such reduction in the memory bandwidth
utilization is due to moving the computation to memory and
preventing the cache thrashing caused by processing TLS on
the CPU. SmartNIC and QuickAssist configurations both fail to
provide any RPS improvement for 4KB messages due to high
overhead for initializing the offload. For example, QuickAssist
fails to deliver comparable RPS to other configurations because
the overhead of setting up a PCIe offload overshadows all the
benefits of hardware acceleration for fine-grain kernel launches.

Fig. 11. Performance of Nginx when executing TLS on different configurations
with 4KB and 16KB message sizes. Higher is better for RPS and lower is better
for CPU and memory utilization. All the results are normalized to that of the
CPU configuration.

The SmartNIC configuration does outperform the CPU baseline
for 16KB message sizes as opposed to shorter 4KB messages.
We also note that even for a 64KB message size, SmartDIMM
is capable of maintaining 11.9% higher RPS at 10.8% lower
CPU utilization and 7.6% lower memory bandwidth utilization
than that of a SmartNIC.

Figure 12 compares SmartDIMM performance with CPU
and QuickAssist for offloading compression. Since compression
is non-size preserving and cannot be autonomously offloaded
to SmartNIC, we do not compare against a SmartNIC con-
figuration. The RPS benefits of offloading compression to
hardware are higher than TLS offload, as the AES-NI instruc-
tions significantly improve CPU performance for symmetric
encryption. Offloading compression of 4KB and 16KB Nginx
HTTP responses to SmartDIMM yields 6.09× and 11.28×
higher RPS compared to CPU baseline while reducing the
CPU and memory bandwidth utilization by 88.9% and 23.6%,
respectively. As expected, QuickAssist is unsuitable for fine-
grain offloading of small messages and does not provide RPS
improvements. It also increases memory and CPU utilization
due to high notification and memory copy overheads.

C. Performance Isolation

In this subsection, we compare the performance of Smart-
DIMM with other configurations when co-running secure Nginx
and a cache-intensive application. Table I compares the average

Table I. Slow down of co-running scenario. The Nginx slowdown in each column
is normalized to the solo run of the same configuration.

Application CPU SmartNIC QuickAssist SmartDIMM

Ngnix 15.8% 7.3% 28.7% 9.5%
505.mcf 15.5% 8.7% 37.9% 10.3%

Fig. 12. Performance of Nginx when executing compression on different
configurations with 4KB and 16KB message sizes. Higher is better for RPS and
lower is better for CPU and memory utilization. All the results are normalized
to that of the CPU configuration.

slowdown of Nginx’s RPS and the mcf workload from the
SPEC2017 benchmark suite [82] when co-running them on
two separate cores (as a baseline we run Nginx and mcf on
the server individually). We co-run 10 mcf instances with an
Nginx server utilizing 10 threads pinned to 10 separate physical
cores. As shown, offloading TLS to SmartDIMM reduces the
interference for both Nginx and mcf by 9.5% and 10.3%.

Note that although SmartDIMM experiences 2.2 percentage
points higher slowdown for Nginx compared with SmartNIC,
the absolute requests per second when co-running Nginx is
still higher for SmartDIMM: 569609 vs. 377879. The higher
absolute requests per second for SmartDIMM results in slightly
higher interference for mcf compared with the SmartNIC
configuration.

D. Area and Power

We use Xilinx Vivado 2019.2 Power analyzer [83] for
estimating the power of SmartDIMM. Our FPGA prototype
consumes 4.78 Watts of dynamic power when SmartDIMM
is fully utilized, meaning that the DDR channel reaches its
full capacity. Our experimental results show less than 30% of
memory channel utilization when offloading TLS for different
applications. On average, across all three benchmarks operating
at maximum sustainable load, SmartDIMM increases the power
consumption of AxDIMM by ∼0.92 Watts. Implementing the
TLS offload on SmartDIMM takes ∼21.8% of the FPGA
resources.

VIII. DISCUSSION

In the current landscape of ULP acceleration, SmartDIMM
demonstrates robust performance amidst contended LLC, main-
tains efficiency despite network packet losses, and adapts to

1
2

3

4
5

6

7

8
1

2

3

4
5

6

7

8

1
2

3

4
5

6

7

8
1

2

3

4
5

6

7

8

1 Contended LLC
2 Not contended LLC
3 TCP Transport
4 UDP Transport
5 Non-size preserving ULP
6 Non-inc computable ULP
7 Lossy/reorder network
8 L4 Flexibility

CPU SmartDIMM

SmartNIC+TOE Autonomous
SmartNIC Offload [28]

Fig. 13. Comparison of the current ULP processing design space. The relative
performance of each processing option is compared with respect to the
following metrics: performance in the face of low or high LLC contention,
compatibility with underlying transport protocols (TCP and UDP), ability to
target diverse (non-size preserving and non-incrementally computable) ULPs,
resistance to performance degradation when packets are lost or reordered,
and the flexibility of the layer-4 transport protocol.

various underlying transport layer protocols. This performance
is depicted in Fig.13, where different ULP processing options
are compared across various criteria.

We note that a SmartNIC offering autonomous ULP offload
with an optimized (zero copy) software stack shares many
benefits, particularly when the underlying transport layer,
such as UDP, does not guarantee reliable delivery of ULP
messages and experiences minimal packet drops. However,
previous SmartNICs that accelerate processing via TCP Offload
Engines (TOEs) bypass out-of-order network stack processing
by offloading both TCP/IP and ULP tasks to the SmartNIC.
As illustrated in Fig.13, this approach can limit optimizations
at the transport layer software and efforts to address emerging
vulnerabilities [84, 85].

While the CPU provides the flexibility to offload any ULP
in conjunction with any software or network stack, it comes
at the cost of increased LLC contention and limited on-chip
resources. This, in turn, adversely affects applications that
depend on ULP processing.

ULP acceleration represents a dynamic and evolving design
space. Employing an accelerator requires system designers to
carefully consider its placement, ensuring alignment with the
application needs and network transport protocol characteristics.
SmartDIMM represents an alternative option in the future of
compute-everywhere data centers.

IX. RELATED WORK

Accelerating data transformations. Accelerating I/O-related
datacenter taxes is becoming a priority for datacenter service
providers. This has sparked the development of hardware
accelerators for ULPs and microservices accessible via RPCs.
Previous works have evaluated different solutions for acceler-
ating data transformations.

Pourhabibi et al. [52, 53] designed hardware accelerators
for serialization frameworks like Google’s protobuf, proposing
solutions for accelerating data transformations on-chip and

on SmartNIC. Karandikar et al. [51] also designed an on-chip
accelerator for accelerating (de)serialization related to Google’s
protobuf. Hu et al. [86] construct an asynchronous framework
for event-driven web services (e.g., Nginx) by creating an
OpenSSL engine that utilizes asynchronous communication
with Intel’s QuickAssist PCIe accelerators. Pismenny et al. [26]
implement inline TLS encryption/decryption and NVMe-TCP
acceleration on Mellanox ConnectX6 NICs without offloading
layers 4 and below. Lazarev et al. [50] introduce a reconfig-
urable FPGA accelerator to offload the entire RPC stack using
fast memory interconnects. SmartDIMM complements these
works by providing an alternative location to process ULPs
inside the memory, preventing cache thrashing at high loads,
and enabling hardware offload for a larger range of ULPs.
Near-memory processing. There are a myriad of prior works
on various near-memory processing architectures [73, 75, 76,
87–97]. SmartDIMM is unique because it removes the need
for a synchronization mechanism between the CPU and near-
memory accelerator, does not require a separate memory
controller for the near-memory accelerator, and implements
an API to reuse the existing software stack and programming
models.

X. CONCLUSION

Restricting accelerator placement for ULPs to CPUs and
SmartNICs limits both the variety of ULPs that can be acceler-
ated and the overall performance. Specifically, such placements
do not take into account the opportunity to accelerate ULPs
operating on top of a stateful transport protocol, especially in
scenarios with high cache contention. At high network rates, the
frequent DRAM accesses and SmartNIC-CPU synchronization
outweigh the benefits of hardware acceleration. In this work,
we introduce SmartDIMM, an architecture and programming
model designed for accelerating ULPs near the memory.
SmartDIMM enables accelerator placement on the buffer device
of commodity DIMMs, thereby unleashing the potential to
accelerate ULPs that operate on stateful transport protocols
and suffer from poor cache performance. We have prototyped
SmartDIMM using Samsung’s AxDIMM and evaluated its
effectiveness with two important ULPs.

ACKNOWLEDGMENTS

This work was supported in part by grants from National
Science Foundation (CCF-2239020 and DGE-1565570), Sam-
sung’s Open Innovation Contest, and ACE, one of the seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. We thank NVIDIA
Academic Hardware Grant Program and Ampere Computing
for their hardware donations. We also thank Ramesh Ganapam
for his circuit models used in our evaluations.

APPENDIX

A. Abstract

This artifact appendix describes how to use the publicly
available scripts to reproduce the sensitivity analysis and
evaluations in Section 7 of this paper. We use a publicly

available HTTP web server (Nginx), compression corpora,
and software compression algorithms available online. Results
reproduced will include web server and system performance
for different accelerator and CPU configurations offloading
ULPs including compression and encryption.

B. Artifact check-list (meta-information)
• Algorithm: SmartDIMM
• Program: Nginx, SmartDIMM-compatible nginx compression

module (source provided)
• Compilation: gcc 8.4.0 (Ubuntu 8.4.0-3ubuntu2)
• Run-time environment: Tested on Ubuntu 20.04
• Hardware: Intel c6250 Server
• Experiments: As described in Sec. VII-B.
• Publicly available?: https://github.com/architecture-research-

group/SmartDIMM_ArtifactEvaluation.git
• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

10278844

C. Description

1) How to access
See github link above.
2) Hardware dependencies
Some experiments depend on access to two servers. They

can be multi-core servers allocated as r650 nodes available
through cloudlab. This hardware is sufficient to reproduce CPU
and SmartNIC results.

3) Software dependencies
See github link above.

D. Installation

Obtain the code and sub-modules from github and run
corresponding fetch and run scripts. Instructions for each
experiment are provided in each subdirectory of the repository.
Scripts for running each experiment are provided as bash shell
scripts.

E. Experiment workflow and expected results

Use build scripts (e.g., build.sh) to compile various nginx
versions, and acquire any required dependencies. Use shell
scripts (e.g., compressed_http_run.sh and tls_http_run.sh) to
generate needed server’s files files and reproduce results.
Normalize and plot them using gnuplot scripts. (Experiment-
specific instructions provided in the Github repository provided
above).

REFERENCES

[1] Alex Guzman, Kyle Nekritz, and Subodh Iyengar. Deploy-
ing tls 1.3 at scale with fizz, a performant open source
tls library. Facebook Engineering, August 2018. URL
https://engineering.fb.com/2018/08/06/security/fizz/.

[2] Tim Anderson, Ken Beer, Min Hyun, and Mark Ryland.
Encrypting data-at-rest and -in-transit. Amazon Web
Services, 2007. URL https://doi.org/10.6028/NIST.SP.800-
38D. NIST Special Publication 800-38D.

[3] Matt Silverlock and Gabriel Redner. Bringing
modern transport security to google cloud with
tls 1.3. Technical report, Google, June 2020.

URL https://cloud.google.com/blog/products/networking/
tls-1-3-is-now-on-by-default-for-google-cloud-services.

[4] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable cross-language services implementation.
Facebook white paper, 5(8):127, 2007. URL https:
//thrift.apache.org/static/files/thrift-20070401.pdf.

[5] Protocol buffers | google developers. https://developers.
google.com/protocol-buffers.

[6] Cap’n proto. https://capnproto.org/.
[7] finagle-rpc. https://twitter.github.io/finagle/.
[8] zstd. https://github.com/facebook/zstd, 2022.
[9] brotli. https://github.com/google/brotli, 2022.

[10] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon Wei,
and David Brooks. Profiling a warehouse-scale computer.
In 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), pages 158–169, 2015.
doi: 10.1145/2749469.2750392.

[11] Akshitha Sriraman and Abhishek Dhanotia. Accelerome-
ter: Understanding Acceleration Opportunities for Data
Center Overheads at Hyperscale. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, ASPLOS ’20, pages 733–750, New York, NY, USA,
March 2020. Association for Computing Machinery. ISBN
978-1-4503-7102-5. doi: 10.1145/3373376.3378450. URL
https://doi.org/10.1145/3373376.3378450.

[12] Geonhwa Jeong, Bikash Sharma, Nick Terrell, Abhishek
Dhanotia, Zhiwei Zhao, Niket Agarwal, Arun Kejariwal,
and Tushar Krishna. Characterization of data compression
in datacenters. In 2023 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
pages 1–12, 2023. doi: 10.1109/ISPASS57527.2023.
00010.

[13] Sagar Karandikar, Aniruddha N. Udipi, Junsun Choi,
Joonho Whangbo, Jerry Zhao, Svilen Kanev, Edwin
Lim, Jyrki Alakuijala, Vrishab Madduri, Yakun Sophia
Shao, Borivoje Nikolic, Krste Asanovic, and Parthasarathy
Ranganathan. CDPU: Co-designing compression and
decompression processing units for hyperscale systems. In
Proceedings of the 50th Annual International Symposium
on Computer Architecture, ISCA ’23, New York, NY,
USA, 2023. Association for Computing Machinery. ISBN
9798400700958. doi: 10.1145/3579371.3589074. URL
https://doi.org/10.1145/3579371.3589074.

[14] Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang
Liu, Vidushi Dadu, Sagar Karandikar, Jichuan Chang,
Krste Asanovic, and Parthasarathy Ranganathan. Pro-
filing hyperscale big data processing. In Proceedings
of the 50th Annual International Symposium on Com-
puter Architecture, ISCA ’23, New York, NY, USA,
2023. Association for Computing Machinery. ISBN
9798400700958. doi: 10.1145/3579371.3589082. URL
https://doi.org/10.1145/3579371.3589082.

[15] Keynote by Bill Dally (NVIDIA): Accelerator Clusters.
https://www.youtube.com/watch?v=napEsaJ5hMU.

https://github.com/architecture-research-group/SmartDIMM_ArtifactEvaluation.git
https://github.com/architecture-research-group/SmartDIMM_ArtifactEvaluation.git
https://doi.org/10.5281/zenodo.10278844
https://doi.org/10.5281/zenodo.10278844
https://engineering.fb.com/2018/08/06/security/fizz/
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://cloud.google.com/blog/products/networking/tls-1-3-is-now-on-by-default-for-google-cloud-services
https://cloud.google.com/blog/products/networking/tls-1-3-is-now-on-by-default-for-google-cloud-services
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://capnproto.org/
https://twitter.github.io/finagle/
https://github.com/facebook/zstd
https://github.com/google/brotli
https://doi.org/10.1145/3373376.3378450
https://doi.org/10.1145/3579371.3589074
https://doi.org/10.1145/3579371.3589082
https://www.youtube.com/watch?v=napEsaJ5hMU

[16] NVIDIA. Nvidia bluefield-3 dpu datasheet.
https://resources.nvidia.com/en-us-accelerated-
networking-resource-library/datasheet-nvidia-
bluefield?lx=LbHvpR&topic=networking-cloud, 2023.

[17] J. Dastidar, D. Riddoch, J. Moore, S. Pope, and J. Wes-
selkamper. The amd 400-g adaptive smartnic system on
chip: A technology preview. IEEE Micro, 43(03):40–49,
may 2023. ISSN 1937-4143. doi: 10.1109/MM.2023.
3260186.

[18] Data Processing Units (DPU) | Empowering 5G Car-
rier, Enterprise and Cloud Data Services - Marvell
— marvell.com. https://www.marvell.com/products/data-
processing-units.html.

[19] Broadcom Inc. | Connecting Everything — broad-
com.com. https://www.broadcom.com/company/news/
product-releases/53106.

[20] Brian Will, Andrea Grandi, and Nicolas Salhuana. Intel®
QuickAssist Technology OpenSSL-1.1.0: Performance.
Technical report, Intel, 01 2017.

[21] AMD GZIP Compression & Decompression — xil-
inx.com. https://www.xilinx.com/products/acceleration-
solutions/xilinx-gzip-compression-decompression.html.

[22] Ben Casey. DirectCompress Accelerator Packs
More into FlashArray//XL, March 2023. URL https:
//blog.purestorage.com/purely-technical/directcompress-
accelerator-packs-more-data-into-flasharray-xl/.

[23] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein,
Ashutosh Mishra, Craig B. Agricola, Bedri Sendir, Alper
Buyuktosunoglu, Christian Jacobi, William J. Starke,
Haren Myneni, and Charlie Wang. Data compression
accelerator on ibm power9 and z15 processors. In
Proceedings of the ACM/IEEE 47th Annual International
Symposium on Computer Architecture, ISCA ’20, page
1–14. IEEE Press, 2020. ISBN 9781728146614. doi:
10.1109/ISCA45697.2020.00012. URL https://doi.org/10.
1109/ISCA45697.2020.00012.

[24] Nevine Nassif, Ashley O. Munch, Carleton L. Molnar,
Gerald Pasdast, Sitaraman V. Lyer, Zibing Yang, Oscar
Mendoza, Mark Huddart, Srikrishnan Venkataraman,
Sireesha Kandula, Rafi Marom, Alexandra M. Kern,
Bill Bowhill, David R. Mulvihill, Srikanth Nimmagadda,
Varma Kalidindi, Jonathan Krause, Mohammad M. Haq,
Roopali Sharma, and Kevin Duda. Sapphire rapids:
The next-generation intel xeon scalable processor. In
2022 IEEE International Solid- State Circuits Confer-
ence (ISSCC), volume 65, pages 44–46, 2022. doi:
10.1109/ISSCC42614.2022.9731107.

[25] Ilias Marinos, Robert N.M. Watson, Mark Handley, and
Randall R. Stewart. Disk|crypt|net: Rethinking the stack
for high-performance video streaming. In Proceedings
of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’17, page 211–224,
New York, NY, USA, 2017. Association for Computing
Machinery. ISBN 9781450346535. doi: 10.1145/3098822.
3098844. URL https://doi.org/10.1145/3098822.3098844.

[26] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran

Liss, Adam Morrison, and Dan Tsafrir. Autonomous nic
offloads. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, page
18–35, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383172. doi:
10.1145/3445814.3446732. URL https://doi.org/10.1145/
3445814.3446732.

[27] Jung-Sik Kim, Kyungwoo Nam, Chi Sung Oh, Han Gu
Sohn, Donghyuk Lee, Sooyoung Kim, Jong-Wook Park,
Yongjun Kim, Mi-Jo Kim, Jin-Guk Kim, Hocheol Lee,
Jinhyoung Kwon, Dong Il Seo, Young-Hyun Jun, and
Kinam Kim. A 512 mb two-channel mobile dram
(onedram) with shared memory array. IEEE Journal
of Solid-State Circuits, 43(11):2381–2389, 2008. doi:
10.1109/JSSC.2008.2004523.

[28] Donghyuk Lee, Lavanya Subramanian, Rachata
Ausavarungnirun, Jongmoo Choi, and Onur Mutlu.
Decoupled direct memory access: Isolating cpu and
io traffic by leveraging a dual-data-port dram. In
2015 International Conference on Parallel Architecture
and Compilation (PACT), pages 174–187, 2015. doi:
10.1109/PACT.2015.51.

[29] Benjamin Y. Cho, Yongkee Kwon, Sangkug Lym, and
Mattan Erez. Near data acceleration with concurrent
host access. In Proceedings of the ACM/IEEE 47th
Annual International Symposium on Computer Architec-
ture, ISCA ’20, page 818–831. IEEE Press, 2020. ISBN
9781728146614. doi: 10.1109/ISCA45697.2020.00072.
URL https://doi.org/10.1109/ISCA45697.2020.00072.

[30] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu
Kim, Eojin Lee, Seungwoo Seo, Hosang Yoon, Seungwon
Lee, Kyounghwan Lim, Hyunsung Shin, Jinhyun Kim,
O Seongil, Anand Iyer, David Wang, Kyomin Sohn, and
Nam Sung Kim. Hardware architecture and software stack
for pim based on commercial dram technology : Industrial
product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pages 43–
56, 2021. doi: 10.1109/ISCA52012.2021.00013.

[31] Jin Hyun Kim, Shin-Haeng Kang, Sukhan Lee, Hyeonsu
Kim, Yuhwan Ro, Seungwon Lee, David Wang, Jihyun
Choi, Jinin So, YeonGon Cho, JoonHo Song, Jeonghyeon
Cho, Kyomin Sohn, and Nam Sung Kim. Aquabolt-xl
hbm2-pim, lpddr5-pim with in-memory processing, and
axdimm with acceleration buffer. IEEE Micro, 42(3):
20–30, 2022. doi: 10.1109/MM.2022.3164651.

[32] Inc. OpenSSL Foundation. /docs/man1.1.1/man1/openssl-
engine.html — openssl.org. https://www.openssl.org/docs/
man1.1.1/man1/openssl-engine.html.

[33] Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018. URL
https://www.rfc-editor.org/info/rfc8446.

[34] Morris Dworkin (NIST). Recommendation for block
cipher modes of operation: Galois/Counter Mode (GCM)
and Galois Message Authentication Code (GMAC). Tech-
nical Report NIST Special Publication 800-38D, U.S.

https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield?lx=LbHvpR&topic=networking-cloud
https://www.marvell.com/products/data-processing-units.html
https://www.marvell.com/products/data-processing-units.html
https://www.broadcom.com/company/news/product-releases/53106
https://www.broadcom.com/company/news/product-releases/53106
https://www.xilinx.com/products/acceleration-solutions/xilinx-gzip-compression-decompression.html
https://www.xilinx.com/products/acceleration-solutions/xilinx-gzip-compression-decompression.html
https://blog.purestorage.com/purely-technical/directcompress-accelerator-packs-more-data-into-flasharray-xl/
https://blog.purestorage.com/purely-technical/directcompress-accelerator-packs-more-data-into-flasharray-xl/
https://blog.purestorage.com/purely-technical/directcompress-accelerator-packs-more-data-into-flasharray-xl/
https://doi.org/10.1109/ISCA45697.2020.00012
https://doi.org/10.1109/ISCA45697.2020.00012
https://doi.org/10.1145/3098822.3098844
https://doi.org/10.1145/3445814.3446732
https://doi.org/10.1145/3445814.3446732
https://doi.org/10.1109/ISCA45697.2020.00072
https://www.openssl.org/docs/man1.1.1/man1/openssl-engine.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-engine.html
https://www.rfc-editor.org/info/rfc8446

Department of Commerce, Washington, D.C., 2007.
[35] P. Deutsch. Deflate compressed data format specification

version 1.3. https://www.rfc-editor.org/rfc/rfc1951.
[36] Content-Encoding - HTTP | MDN — devel-

oper.mozilla.org. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Content-Encoding.
[Accessed 23-12-2023].

[37] J. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information
Theory, 23(3):337–343, 1977. doi: 10.1109/TIT.1977.
1055714.

[38] David A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.
273898.

[39] Intel data direct i/o technology (intel ddio): A
primer. https://www.intel.com/content/www/us/en/io/data-
direct-i-o-technology-brief.html.

[40] ARM. Arm DynamIQ Shared Unit Technical Reference
Manual r3p0. https://developer.arm.com/documentation/
100453/0300/.

[41] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin
Walls, Katerina Argyraki, Sylvia Ratnasamy, and Scott
Shenker. ResQ: Enabling SLOs in network function
virtualization. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
283–297, Renton, WA, April 2018. USENIX Association.
ISBN 978-1-939133-01-4. URL https://www.usenix.org/
conference/nsdi18/presentation/tootoonchian.

[42] Mohammad Alian, Siddharth Agarwal, Jongmin Shin,
Neel Patel, Yifan Yuan, Daehoon Kim, Ren Wang,
and Nam Sung Kim. Idio: Network-driven, inbound
network data orchestration on server processors. In
2022 55th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pages 480–493, 2022. doi:
10.1109/MICRO56248.2022.00042.

[43] Shay Gueron. Intel advanced encryption standard (aes)
new instructions set, 2010.

[44] Intel. Intel quickassist adapter 8970. URL https://www.
intel.com/content/www/us/en/products/sku/125200/intel-
quickassist-adapter-8970/specifications.html.

[45] B. Kaliski J. Jonsson A. Rusch K. Moriarty, Ed. PKCS
1: RSA Cryptography Specifications Version 2.2. RFC
8017, November 2016. URL https://datatracker.ietf.org/
doc/html/rfc8017.

[46] M. Salter D. McGrew, K. Igoe. Fundamental Elliptic
Curve Cryptography Algorithms. RFC 6090, February
2011. URL https://datatracker.ietf.org/doc/html/rfc6090.

[47] Amirhossein Mirhosseini, Hossein Golestani, and
Thomas F. Wenisch. Hyperplane: A scalable low-latency
notification accelerator for software data planes. In 2020
53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 852–867, 2020. doi:
10.1109/MICRO50266.2020.00074.

[48] Yifan Yuan, Jinghan Huang, Yan Sun, Tianchen Wang,
Jacob Nelson, Dan R. K. Ports, Yipeng Wang, Ren Wang,

Charlie Tai, and Nam Sung Kim. Rambda: Rdma-driven
acceleration framework for memory-intensive µs-scale
datacenter applications. In 2023 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pages 499–515, 2023. doi: 10.1109/HPCA56546.
2023.10071127.

[49] Mohammad Alian and Nam Sung Kim. NetDIMM: Low-
latency near-memory network interface architecture. In
Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 699–711. ACM,
2019.

[50] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang,
and Christina Delimitrou. Dagger: Efficient and fast rpcs
in cloud microservices with near-memory reconfigurable
nics. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, page
36–51, New York, NY, USA, 2021. Association for
Computing Machinery. ISBN 9781450383172. doi:
10.1145/3445814.3446696. URL https://doi.org/10.1145/
3445814.3446696.

[51] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry
Zhao, Dinesh Parimi, Borivoje Nikolic, Krste Asanovic,
and Parthasarathy Ranganathan. A hardware accelera-
tor for protocol buffers. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’21, page 462–478, New York, NY, USA,
2021. Association for Computing Machinery. ISBN
9781450385572. doi: 10.1145/3466752.3480051. URL
https://doi.org/10.1145/3466752.3480051.

[52] Arash Pourhabibi, Mark Sutherland, Alexandros Daglis,
and Babak Falsafi. Cerebros: Evading the rpc tax in
datacenters. In MICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO ’21,
page 407–420, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450385572. doi:
10.1145/3466752.3480055. URL https://doi.org/10.1145/
3466752.3480055.

[53] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark
Sutherland, Zilu Tian, Mario Paulo Drumond, Babak
Falsafi, and Christoph Koch. Optimus prime: Accelerating
data transformation in servers. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 1203–1216, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN
9781450371025. doi: 10.1145/3373376.3378501. URL
https://doi.org/10.1145/3373376.3378501.

[54] Yifan Yuan, Mohammad Alian, Yipeng Wang, Ren
Wang, Ilia Kurakin, Charlie Tai, and Nam Sung Kim.
Don’t forget the i/o when allocating your llc. In 2021
ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), pages 112–125. IEEE,
2021.

[55] Minhu Wang, Mingwei Xu, and Jianping Wu. Un-
derstanding I/O Direct Cache Access Performance for

https://www.rfc-editor.org/rfc/rfc1951
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Encoding
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Encoding
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://developer.arm.com/documentation/100453/0300/
https://developer.arm.com/documentation/100453/0300/
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
https://www.intel.com/content/www/us/en/products/sku/125200/intel-quickassist-adapter-8970/specifications.html
https://www.intel.com/content/www/us/en/products/sku/125200/intel-quickassist-adapter-8970/specifications.html
https://www.intel.com/content/www/us/en/products/sku/125200/intel-quickassist-adapter-8970/specifications.html
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc6090
https://doi.org/10.1145/3445814.3446696
https://doi.org/10.1145/3445814.3446696
https://doi.org/10.1145/3466752.3480051
https://doi.org/10.1145/3466752.3480055
https://doi.org/10.1145/3466752.3480055
https://doi.org/10.1145/3373376.3378501

End Host Networking. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 6(1):
22:1–22:37, February 2022. doi: 10.1145/3508042. URL
https://dl.acm.org/doi/10.1145/3508042.

[56] Donghun Lee, Jinin So, MINSEON AHN, Jong-
Geon Lee, Jungmin Kim, Jeonghyeon Cho, Rebholz
Oliver, Vishnu Charan Thummala, Ravi shankar JV,
Sachin Suresh Upadhya, Mohammed Ibrahim Khan, and
Jin Hyun Kim. Improving in-memory database operations
with acceleration dimm (axdimm). In Data Management
on New Hardware, DaMoN’22, New York, NY, USA,
2022. Association for Computing Machinery. ISBN
9781450393782. doi: 10.1145/3533737.3535093. URL
https://doi.org/10.1145/3533737.3535093.

[57] Xilinx. Ultrascale architecture-based fpgas memory ip
v1.4, 2022. URL https://www.xilinx.com/content/dam/
xilinx/support/documents/ip_documentation/ultrascale_
memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf.

[58] R. N. Mahapatra and R. V.C. TCAM architecture for
ip lookup using prefix properties. IEEE Micro, 24(02):
60–69, March 2004. ISSN 1937-4143. doi: 10.1109/MM.
2004.1289292.

[59] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G.
Spirakis. Space efficient hash tables with worst case
constant access time. In Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science,
STACS ’03, page 271–282, Berlin, Heidelberg, 2003.
Springer-Verlag. ISBN 3540006230.

[60] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and
Josep Torrellas. Elastic Cuckoo Page Tables: Rethink-
ing Virtual Memory Translation for Parallelism, page
1093–1108. Association for Computing Machinery, New
York, NY, USA, 2020. ISBN 9781450371025. URL
https://doi.org/10.1145/3373376.3378493.

[61] JEDEC Standard: DDR4 SDRAM, 2012.
[62] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,

Christopher Fletcher, Roy Campbell, and Josep Torrellas.
Attack directories, not caches: Side channel attacks in
a non-inclusive world. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 888–904, 2019. doi:
10.1109/SP.2019.00004.

[63] Alex Markuze, Adam Morrison, and Dan Tsafrir. True
iommu protection from dma attacks: When copy is
faster than zero copy. In Proceedings of the Twenty-
First International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’16, page 249–262, New York, NY, USA,
2016. Association for Computing Machinery. ISBN
9781450340915. doi: 10.1145/2872362.2872379. URL
https://doi.org/10.1145/2872362.2872379.

[64] Jonathan Corbet. Zero-copy tcp receive. https://lwn.net/
Articles/752188/.

[65] Alex Markuze, Igor Golikov, and Chen Dar.
Rethinking Zero-Copy Networking with MAIO. URL
https://netdevconf.info/0x15/session.html?Rethinking-
Zero-Copy-Networking-with-MAIO.

[66] Morris J Dworkin. Sp 800-38d. recommendation for
block cipher modes of operation: Galois/counter mode
(gcm) and gmac. Technical report, 2007. URL https:
//csrc.nist.gov/pubs/sp/800/38/d/final.

[67] Jeremy Fowers, Joo-Young Kim, Doug Burger, and
Scott Hauck. A scalable high-bandwidth architecture
for lossless compression on fpgas. In 2015 IEEE 23rd
Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 52–59, 2015. doi:
10.1109/FCCM.2015.46.

[68] Weikang Qiao, Jieqiong Du, Zhenman Fang, Libo Wang,
Michael Lo, Mau-Chung Frank Chang, and Jason Cong.
High-throughput lossless compression on tightly coupled
cpu-fpga platforms: (abstract only). In Proceedings
of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’18, page 291,
New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356145. doi: 10.1145/3174243.
3174987. URL https://doi.org/10.1145/3174243.3174987.

[69] Dave Watson. Ktls: Linux kernel transport layer security.
Proposal by Facebook Engineer, 2016.

[70] ULP Framing for TCP. https://datatracker.ietf.org/doc/
draft-ietf-tsvwg-tcp-ulp-frame/, 2023.

[71] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploit-
ing DRAM addressing for cross-cpu attacks. In
25th USENIX Security Symposium (USENIX Secu-
rity 16), pages 565–581, Austin, TX, August 2016.
USENIX Association. ISBN 978-1-931971-32-4.
URL https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl.

[72] Jim Reece published. DDR DRAM FAQs And Trou-
bleshooting Guide, June 2015. URL https://www.
tomshardware.com/reviews/ddr-dram-faq,4154.html.

[73] Mohammad Alian, Seung Won Min, Hadi Asgharimoghad-
dam, Ashutosh Dhar, Dong Kai Wang, Thomas Roewer,
Adam McPadden, Oliver O’Halloran, Deming Chen,
Jinjun Xiong, et al. Application-transparent near-memory
processing architecture with memory channel network. In
2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 802–814. IEEE,
2018.

[74] Alexandar Devic, Siddhartha Balakrishna Rai, Anand
Sivasubramaniam, Ameen Akel, Sean Eilert, and Justin
Eno. To pim or not for emerging general purpose
processing in ddr memory systems. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, ISCA ’22, page 231–244, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN
9781450386104. doi: 10.1145/3470496.3527431. URL
https://doi.org/10.1145/3470496.3527431.

[75] Weiyi Sun, Zhaoshi Li, Shouyi Yin, Shaojun Wei, and
Leibo Liu. Abc-dimm: alleviating the bottleneck of
communication in dimm-based near-memory processing
with inter-dimm broadcast. In 2021 ACM/IEEE 48th An-
nual International Symposium on Computer Architecture

https://dl.acm.org/doi/10.1145/3508042
https://doi.org/10.1145/3533737.3535093
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/2872362.2872379
https://lwn.net/Articles/752188/
https://lwn.net/Articles/752188/
https://netdevconf.info/0x15/session.html?Rethinking-Zero-Copy-Networking-with-MAIO
https://netdevconf.info/0x15/session.html?Rethinking-Zero-Copy-Networking-with-MAIO
https://csrc.nist.gov/pubs/sp/800/38/d/final
https://csrc.nist.gov/pubs/sp/800/38/d/final
https://doi.org/10.1145/3174243.3174987
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-tcp-ulp-frame/
https://datatracker.ietf.org/doc/draft-ietf-tsvwg-tcp-ulp-frame/
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.tomshardware.com/reviews/ddr-dram-faq,4154.html
https://www.tomshardware.com/reviews/ddr-dram-faq,4154.html
https://doi.org/10.1145/3470496.3527431

(ISCA), pages 237–250. IEEE, 2021.
[76] Zhe Zhou, Cong Li, Fan Yang, and Guangyu Sun. Dimm-

link: Enabling efficient inter-dimm communication for
near-memory processing. In 2023 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pages 302–316, 2023. doi: 10.1109/HPCA56546.
2023.10071005.

[77] Will Reese. Nginx: The high-performance web server and
reverse proxy. Linux J., 2008(173), sep 2008. ISSN 1075-
3583. URL https://www.linuxjournal.com/article/10108.

[78] Shay Gueron. Intel advanced encryption
standard instructions (aes-ni), 2010. URL https:
//www.intel.com/content/dam/doc/white-paper/advanced-
encryption-standard-new-instructions-set-paper.pdf.

[79] Mellanox. Kernel transport layer security (ktls) offloads,
2020.

[80] wrk - a HTTP benchmarking tool. https://github.com/wg/
wrk, 2023. [].

[81] Khang T Nguyen. Cache Allocation Technology in
Intel® Xeon® Processor. https://www.intel.com/content/
www/us/en/developer/articles/technical/introduction-to-
cache-allocation-technology.html.

[82] Spec cpu® 2017. https://www.spec.org/cpu2017/.
[83] Vivado Design Suite User Guide: Getting Started (UG910).

2021.
[84] Jake Edge. The tcp sack panic, 2005. URL https://lwn.

net/Articles/791409/.
[85] CVE-2019-11478. Available from NIST, CVE-ID CVE-

2019-11478., 3 2019. URL https://nvd.nist.gov/vuln/
detail/CVE-2019-11478.

[86] Xiaokang Hu, Changzheng Wei, Jian Li, Brian Will,
Ping Yu, Lu Gong, and Haibing Guan. Qtls: High-
performance tls asynchronous offload framework with
intel® quickassist technology. In Proceedings of the
24th Symposium on Principles and Practice of Parallel
Programming, PPoPP ’19, page 158–172, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN
9781450362252. doi: 10.1145/3293883.3295705. URL
https://doi.org/10.1145/3293883.3295705.

[87] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine
Morrow, and Nam Sung Kim. Nda: Near-dram accel-
eration architecture leveraging commodity dram devices
and standard memory modules. In 2015 IEEE 21st
International Symposium on High Performance Com-
puter Architecture (HPCA), pages 283–295, 2015. doi:
10.1109/HPCA.2015.7056040.

[88] Jaeyoung Jang, Jun Heo, Yejin Lee, Jaeyeon Won,
Seonghak Kim, Sung Jun Jung, Hakbeom Jang, Tae Jun
Ham, and Jae W. Lee. Charon: Specialized near-
memory processing architecture for clearing dead ob-
jects in memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’52, page 726–739, New York, NY, USA,
2019. Association for Computing Machinery. ISBN
9781450369381. doi: 10.1145/3352460.3358297. URL
https://doi.org/10.1145/3352460.3358297.

[89] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. Tensor-
dimm: A practical near-memory processing architecture
for embeddings and tensor operations in deep learning. In
Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO ’52, page
740–753, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450369381. doi:
10.1145/3352460.3358284. URL https://doi.org/10.1145/
3352460.3358284.

[90] Gagandeep Singh, Juan Gómez-Luna, Giovanni Mariani,
Geraldo F. Oliveira, Stefano Corda, Sander Stuijk, Onur
Mutlu, and Henk Corporaal. Napel: Near-memory com-
puting application performance prediction via ensemble
learning. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–6, 2019.

[91] Amirali Boroumand, Saugata Ghose, Youngsok Kim,
Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur,
Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy
Ranganathan, and Onur Mutlu. Google Workloads for
Consumer Devices: Mitigating Data Movement Bottle-
necks, page 316–331. Association for Computing Machin-
ery, New York, NY, USA, 2018. ISBN 9781450349116.
URL https://doi.org/10.1145/3173162.3173177.

[92] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David
Brooks, Vikas Chandra, Utku Diril, Amin Firoozshahian,
Kim Hazelwood, Bill Jia, Hsien-Hsin S Lee, et al.
Recnmp: Accelerating personalized recommendation with
near-memory processing. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture
(ISCA), pages 790–803. IEEE, 2020.

[93] Christina Giannoula, Nandita Vijaykumar, Nikela Pa-
padopoulou, Vasileios Karakostas, Ivan Fernandez, Juan
Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios
Goumas, and Onur Mutlu. Syncron: Efficient syn-
chronization support for near-data-processing architec-
tures. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 263–
276. IEEE, 2021.

[94] Xinfeng Xie, Zheng Liang, Peng Gu, Abanti Basak, Lei
Deng, Ling Liang, Xing Hu, and Yuan Xie. Spacea: Sparse
matrix vector multiplication on processing-in-memory
accelerator. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages
570–583. IEEE, 2021.

[95] Gagandeep Singh, Mohammed Alser, Damla Senol Cali,
Dionysios Diamantopoulos, Juan Gómez-Luna, Henk
Corporaal, and Onur Mutlu. Fpga-based near-memory
acceleration of modern data-intensive applications. IEEE
Micro, 41(4):39–48, 2021.

[96] Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Sung-Kyu
Lim, Hyesoon Kim, et al. Fafnir: Accelerating sparse
gathering by using efficient near-memory intelligent
reduction. In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages
908–920. IEEE, 2021.

[97] Siying Feng, Xin He, Kuan-Yu Chen, Liu Ke, Xuan Zhang,

https://www.linuxjournal.com/article/10108
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.spec.org/cpu2017/
https://lwn.net/Articles/791409/
https://lwn.net/Articles/791409/
https://nvd.nist.gov/vuln/detail/CVE-2019-11478
https://nvd.nist.gov/vuln/detail/CVE-2019-11478
https://doi.org/10.1145/3293883.3295705
https://doi.org/10.1145/3352460.3358297
https://doi.org/10.1145/3352460.3358284
https://doi.org/10.1145/3352460.3358284
https://doi.org/10.1145/3173162.3173177

David Blaauw, Trevor Mudge, and Ronald Dreslinski.
Menda: A near-memory multi-way merge solution for
sparse transposition and dataflows. In Proceedings of
the 49th Annual International Symposium on Computer

Architecture, ISCA ’22, page 245–258, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN
9781450386104. doi: 10.1145/3470496.3527432. URL
https://doi.org/10.1145/3470496.3527432.

https://doi.org/10.1145/3470496.3527432

	Introduction
	Background
	Motivation
	SmartDIMM Architecture
	Offload Model
	Scratchpad Recycling: Self- vs. Force-Recycling
	Hardware Architecture
	Software Architecture
	Discussion

	TLS & Compression Offload on SmartDIMM
	Transport Layer Security (TLS) Protocol
	Layer-5 (De)Compression Protocol
	Software Stack
	Memory Channel Interleaving

	Methodology
	Evaluation
	Effectiveness of the Offload Model
	Performance Comparison
	Performance Isolation
	Area and Power

	Discussion
	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow and expected results

