
2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Data Motion Acceleration: Chaining Cross-Domain
Multi Accelerators

Shu-Ting Wang Hanyang Xu Amin Mamandipoor† Rohan Mahapatra
Byung Hoon Ahn Soroush Ghodrati Krishnan Kailas§

Mohammad Alian† Hadi Esmaeilzadeh
University of California San Diego †University of Kansas §IBM Research

{shutingwang, hanyang}@ucsd.edu amin.mamandi@ku.edu {rohan, bhahn, soghodra}@ucsd.edu kailas@us.ibm.com
alian@ku.edu hadi@ucsd.edu

Abstract—There has been an arms race for devising accelerators
for deep learning in recent years. However, real-world applications
are not only neural networks but often span across multiple
domains, e.g., database queries, compression, encryption, video
coding, signal processing, and traditional machine learning, which
may or may not contain deep learning. The sole focus on this single
domain is sub-optimal as it misses the potential to proliferate and
promote cross-domain multi-acceleration as there is an oppor-
tunity to harness the power of chaining heterogeneous Domain-
Specific Architectures (DSAs) in modern datacenter applications.
However, there is a catch as the data motion overhead can outweigh
the benefits from all these chained heterogeneous accelerators.
We dub the data restructuring and communication overhead of
executing a single application using a chain of accelerators [1]
as the data motion overhead. In a stark contrast with most
works on DSAs that deal with accelerating compute kernels,
this work focuses on accelerating data motion within a chain of
heterogeneous DSAs in a multi-accelerator datacenter. To that end,
this paper introduces Data Motion Acceleration (DMX) for (1)
reducing data movement, (2) accelerating data restructuring, and
(3) enabling interoperability between heterogeneous accelerators
from different domains through a cross-stack hardware-software
solution. The results with five end-to-end applications show that
utilizing DMX offers up to 8.2×, 13.6×, and 5.2× improvement in
latency, throughput, and energy efficiency in a multi-accelerator
system, respectively.

I. INTRODUCTION

With the effective end of Dennard Scaling [2], the dark
silicon [3–5] phenomenon sparked significant interest in
Domain-Specific Architectures (DSAs) or accelerators. With the
Cambrian explosion of research on designing accelerators [6–
64] and shifts in cloud computing [19, 65–75], it is fitting
to consider the current cadence of the datacenter design as
a starting point for the large-scale adoption of accelerators.
For instance, Amazon Web Service (AWS) [65, 66], Microsoft
Azure [67–69, 72], Google Cloud Platform (GCP) [19, 73, 74],
and IBM Hybrid Multicloud [76–78] as the four providers of
cloud services recently started offering accelerator equipped
instances, while Meta started to use accelerators for their
internal workloads [75].

To date, these early adoptions rather exclusively focus on
the single domain of deep learning. Whereas, the real-world
end-to-end applications cross the boundary of multiple domains
(e.g., database queries, compression, encryption, video coding,
signal processing, and traditional machine learning) and may or

CPU

Accelerator1

Accelerator2

Acceleratori

Acceleratorn

DRX1

DRX2

DRXi

DRXn

Sy
st

em
 In

te
rc

on
ne

ct

(e
.g

.,
PC

Ie
)

Fig. 1: Multi-accelerator systems using DMX removes the CPU from the
critical path of multi-acceleration. CPU, DRX, and accelerators are connected
with system interconnect, e.g., PCIe. DMX delivers the performance of a
monolithic accelerator while offering the composability and programmablity of
the baseline system.

may not include deep neural networks. Focusing on the single
domain of neural networks does not fully take advantage of the
potential for acceleration. According to Amdahl’s Law [79],
after accelerating the neural domain, the overall speedup is
and will be limited by the fraction of the code that is not
accelerated. To this end, cross-domain multi-acceleration in
datacenters seems to be one of the next exciting opportunities
for research and development.

While the research community has explored accelerators
across different domains [56–63, 80–84], the adoption of these
heterogeneous accelerator in datacenters is challenging. When
the application lends itself to cross-domain multi-acceleration,
chaining heterogeneous accelerators seems alluring [1], yet it
may not be effective. That is because each accelerator generates
and consumes data in its own specific format and chaining
them requires restructuring inputs and outputs. Normally, the
host CPU would be responsible for this restructuring to enable
data motion from one accelerator to another. First, this setup
puts the CPU on the critical path of operand delivery as
it has to carry out the data restructuring computations to
effectively chain multiple accelerators. Second, the data needs
to be copied to/from the CPU across the system interconnect,

mailto:shutingwang@ucsd.edu
mailto:hanyang@ucsd.edu
mailto:amin.mamandi@ku.edu
mailto:rohan@ucsd.edu
mailto:b2ahn@ucsd.edu
mailto:soghodra@ucsd.edu
mailto:kailas@us.ibm.com
mailto:alian@ku.edu
mailto:hadi@ucsd.edu

which causes extra traffic. We dub these data restructuring and
communication overheads as the data motion overhead, which
can hinder multi-acceleration.

To address this pain point, we propose Data Motion Accel-
eration (DMX) to delegate data restructuring calculations from
the CPU to a specialized, yet programmable module near the
accelerators. We refer to this module as Data Restructuring
Accelerator (DRX) as conceptually illustrated in Figure 1. A
group of DRXs acts as a compute-enabled glue that removes
the CPU from the critical path of chaining heterogeneous
accelerators. As such, our innovation creates the illusion of
a monolithic but composable accelerator for the application.
The DRXs enable the system to compose any arbitrary chain
of the available accelerators or swap them with alternatives
or new ones. DRX is the microarchitecture mechanism that
materializes the notion of Data Motion Acceleration (DMX).

We evaluate DMX using five end-to-end applications, each
of which is composed of kernels from different domains that
naturally require data restructuring to use multiple accelerators.
We evaluate the benefits of various DMX topologies and
configurations compared to a corresponding baseline that uses
the same accelerators but, executes data restructuring on the
host CPU. On average, Data Motion Acceleration (DMX)
provides between 3.4× to 8.2× speedup, 3.0× to 13.6× higher
throughput, and 3.8× to 5.2× energy reduction. The significant
additional improvements over a baseline that itself maximally
speeds up an application with multiple accelerators demonstrate
the importance of data motion as heterogeneous accelerators
begin to take the stage in datacenters.

II. THE CASE FOR DATA MOTION ACCELERATION

The current accelerator cards, unlike GPUs, do not have
a well-supported system around proprietary interconnection
and programming interfaces such as NVLINK and CUDA.
Accelerator cards are developed by individual vendors using
standard interconnection technologies (i.e., PCIe) and lack
a standard interface to inter-operate with each other. The
vendors implicitly assume that their accelerator is the only
accelerator in the system. Therefore, two DSAs implemented
on different accelerator cards rely on a CPU to communicate
with each other following these Steps: (S1) the CPU copies
the output of the first accelerator to the system memory, (S2)
the CPU transforms the output to the second accelerator’s
input format, (S3) the CPU copies the transformed data to
the second accelerator’s memory, and (S4) the CPU fires up
the computation on the second accelerator. Note that often the
CPU configures a DMA device to copy data from accelerator
memory to system memory. The lack of an inter-accelerator
communication standard necessitates excessive data movement
and data restructuring overhead for performing non-trivial data
restructuring operations on general-purpose cores.
A. Data Restructuring Operations

In this work, we use five end-to-end applications that span
multiple domains [82–87] to demonstrate the inefficiencies of
cross-domain acceleration in a multi-accelerator system without

Data Mo'on

Audio
Genre

FFT
Kernel

FFT Kernel SVM Kernel

Audio
Snippet

Restructure
FFT Output to
Spectrogram

Restructure
Spectrogram
to Mel-scale

(a)

5-Second
Audio

Snippet

Audio
GenreCPU

Accelerator2

(SVM)
Accelerator1

(FFT)
Audio

Snippet

(b)

5-Second
Audio

Snippet

Audio
GenreDRX

Accelerator1

(FFT)
Accelerator2

(SVM)
Audio

Snippet

(c)

Fig. 2: (a) Data motion stands between two application kernels, i.e., Fast
Fourier Transform and Support Vector Machine, of an end-to-end application.
(b) Data motion is on CPU and application kernels are on their corresponding
accelerators (c) For DMX, data motion is accelerated on DRX and application
kernels are on their corresponding accelerators.

data motion acceleration. Each of the applications has different
kernels – that span both ML and non-ML domains – and data
restructuring requirements between the kernels.

Figure 2(a) illustrates the end-to-end pipeline of one of
the five applications. As shown, Sound Detection is composed
of two domain-specific application kernels: (1) FFT kernel
performs short-time Fourier transformation for the input audio
snippet, and (2) support vector machine kernel determines the
genre of the audio snippet. An intermediate data motion step
is required for restructuring the output of the FFT kernel
to the input format of the support vector machine kernel
while copying the data from the output buffer to the input
buffer. In this example, data restructuring requires generating
a spectrogram from the output of FFT kernels and applying
mel scale transformation to the spectrogram. The mel scale
transformation maps the spectrogram into mel-frequency bins
which are closer to the human-perceivable scale. In a system
without data motion acceleration, the CPU should perform
these data restructuring operations as shown in Figure 2(b).

B. Data Motion Overheads

Figure 3(a) shows the geometric mean of the runtime
breakdown for the five cross-domain representative applications.
Refer to Sec.VI for a detailed explanation of the applications.
We show the results for co-running up to 15 applications on
the server while data restructuring is performed on the CPU.
All-CPU configuration runs application kernels on the CPU
while Multi-Axl runs the application kernels on the accelerators.
Because each application consists of 2 domain-specific kernels,
a 15 application setup runs on 30 accelerators.

Both All-CPU and Multi-Axl are evaluated on Intel Xeon
Platinum 8260L CPU. Application kernels are run on accel-
erators synthesized on Xilinx UltraScale+ VU9P FPGA (See
Sec.VI for the detailed setup). As Figure 3(a) shows, in the All-
CPU setup, the execution of domain-specific kernels accounts
for up to 78.5% and on average 49.1% of the total runtime.

1 app 5 apps 10 apps 15 apps

(a)

 1 app 5 apps 10 apps 15 apps
0.0×
0.5×
1.0×
1.5×
2.0×

Sp
ee

du
p

 M
ul

ti-
Ax

l/A
ll-

CP
U 1.
6

1.
3

1.
2

1.
1

(b)

Fig. 3: (a) Runtime breakdown for All-CPU configuration that runs application
kernels on the CPU and Multi-Axl configuration that runs the application
kernels on the accelerators. Both configurations perform data restructuring on
CPU. (b) Multi-Axl speedup is constrained by data motion overhead.

However, the Multi-Axl setup reduces the runtime of domain-
specific kernels, but at the same time amplifies the ratio of
data motion within the end-to-end runtime. The ratios range
from 71.3% to 97.1%, showing that data motion becomes the
performance bottleneck under multi-acceleration.

Another important observation from Figure 3 is the poor
scalability of multi-acceleration in the absence of data motion
acceleration, particularly when multiple applications are using
multiple accelerators for acceleration at the same time. The
transition from a single application to five applications reveals
data motion as a critical bottleneck. The limited PCIe bandwidth
of CPUs becomes a constraining factor for data moving in
and out of the CPU for data restructuring operations, as it
cannot directly connect to all accelerators simultaneously. As
the number of applications increases further to 10 and 15,
the CPU’s inability to manage the increased concurrency of
data restructuring operations becomes apparent, even with the
use of 16 Xeon cores. This bottleneck in data movement and
restructuring significantly hinders the overall speedup that could
be achieved through multi-acceleration at scale. As illustrated in
Figure 3(b), accelerating the application kernel while depending
on the CPU for data restructuring results in 1.4× and 1.1×
end-to-end speedup for 1 and 10 applications respectively, even
though the geometric mean of per accelerator speedup is 6.5×.

These results demonstrate the untapped potential of multi-
acceleration with accelerated data motion. This significant
performance difference between end-to-end and per-kernel
speed-up stems from the following Insights: (I1) Using special-
ized accelerators reduces the runtime of kernels significantly,
shifting Amdahl’s bottleneck towards data motion. (I2) Host
CPU engagement imposes inevitable data communication with

accelerators, adding the cost of data movement on top of
data restructuring. (I3) Heterogeneity in the architecture of
both accelerators and CPU demands additional arithmetic
operations, data type conversions, and layout transformation for
data restructuring, further amplifying the cost of data motion.
By heeding these insights, this work makes an initial step
towards devising the concept of data motion acceleration for
next-generation multi-acceleration systems.

C. DMX: Accelerating the Data Motion

DMX accelerates data restructuring and bypasses CPU
for data movement between accelerators via integrating a
purposefully-built Data Restructuring Accelerator (DRX) into
the system (Figure 2(c)). Realizing DMX requires synergistic
design considerations at the following levels:

• DRX Placement. An important design decision in DMX
is the location of the DRX. The placement of DRX impacts
the data movement and the overall system design. We
consider four different placements for DRX: integration on
the CPU, standalone PCIe-attached card, per accelerator
bump-in-the-wire placement, and integration on the PCIe
switches.

• Specialized Hardware Acceleration. We need to design
DRX to be programmable and support a range of data
restructuring operations. As Figure 3(a) shows, data
restructuring accounts for 57.7%∼73.2% of end-to-end
runtime, therefore efficient execution of data restructuring
is critical for multi-acceleration.

• System Integration and Programmability. To minimize
data movement, the CPU should be removed from the
critical path of accelerator-to-accelerator communication.
However, the control plane should run on the CPU,
otherwise, it requires a completely new programming
interface that stifles interoperability of DMX across
arbitrary accelerators. In Sec.V we explain a programming
interface built atop an existing programming framework
and show how DMX offloads the data motion to the
hardware without changing the CPU-centric control plane.

In Sec.III we explore various placements for DRX and study
their trade-offs. Our results show a tight integration of DRX and
accelerators in a bump-in-the-wire fashion minimizes the data
movement and delivers the optimal performance and energy
efficiency at scale. Next, we demystify the data restructuring
operations in Sec.IV and introduce a programmable accelerator
specialized for the data restructuring domain. Lastly in Sec.V,
we discuss the runtime and drivers that coordinate the offload of
data restructuring to bump-in-the-wire DRX while still running
the control plane on the CPU.

III. DRX PLACEMENT

The key design considerations in designing DMX are
the placement of DRX and interconnection between DRX,
accelerator, and CPU in the system. Since DMX is to enable
interoperability between accelerators designed by different
vendors, DRX’s interconnect should be standard and well
adopted. As such, the current incarnation of DMX considers

PCIe

Accelerator1

PCIe
Switch1

Accelerator2 Accelerator3
Accelerator4

PCIe
Switchk

Acceleratorn-1 Acceleratorn

CPU DRX1

(a) Integrated DRX.

PCIe

Accelerator1

PCIe
Switch1

Accelerator2 Accelerator3
Accelerator4

PCIe
Switchk

Acceleratorn-1 Acceleratorn

CPU

DRX1 DRXm

(b) Standalone DRX.

PCIe

Accelerator1

PCIe
Switch1

Accelerator2 Accelerator3
Accelerator4

PCIe
Switchk

Acceleratorn-1 Acceleratorn

CPU

DRX1 DRXk

(c) PCIe-Integrated DRX.

PCIe

Accelerator1

PCIe
Switch1

Accelerator2 Accelerator3
Accelerator4

PCIe
Switchk

Acceleratorn-1 Acceleratorn

CPU

DRX1 DRX2 DRX3 DRX4 DRXn-1 DRXn

(d) Bump-in-the-Wire DRX.

Fig. 4: DRX placement. Number of DRX units in Standalone placement (b) is configurable, and the illustration represents just one possible configuration.

PCIe as the standard interconnect to connect accelerators
to CPU and DRX. PCIe is a well-established standard of
interconnect and serves as the basis for future interconnects
such as CXL [88].

The placement of DRX ideally should (1) scale with
the capacity of associated accelerators, (2) avoid being the
bandwidth bottleneck when accelerators transfer/receive data
from it, and (3) minimize data movement as data movement
is the main performance and energy bottleneck in today and
future system [89].
Integrated DRX into CPU. This configuration considers
integrating DRX with the CPU as illustrated in Figure 4(a).
The integrated accelerators become more common recently as
Intel Sapphire Rapids, IBM z15, POWER9, and Telum offer
them in their CPU products [90–92]. Integrated accelerators
are efficient in performing computation on the data that is on
the CPU chip. However, integrated accelerators are going to eat
up the already limited CPU power budget [3, 4]. Such power
and thermal constraints limit the performance of integrated
accelerators on the CPU.

DMX considers a fixed power budget for an integrated
accelerator and design an Integrated DRX to operate within
this power limit [91, 93]. This fixed power budget limits the
performance of DRX. As we will show in Sec.VII, Integrated
DRX becomes the performance bottleneck when scaling the
number of accelerators to more than 8. Although integrating
DRX using die-to-die interconnects like UCIe could alleviate
the affect, integrated DRX still become the performance

bottleneck with excessive data movement [94–96]. Moreover,
Integrated DRX has the same data movement as the baseline
CPU without DRX. Such design requires all accelerators to send
their data to the CPU which makes the PCIe link connecting the
CPU to the accelerators the bandwidth bottleneck when multiple
accelerators use DRX at the same time. Such data movement
is also the main source of system energy consumption.
Standalone DRX as a PCIe card. This configuration considers
implementing DRX as a standalone PCIe card that is installed
just like any other accelerator on a PCIe slot. Without using
an external power supply cable, the performance of a single
Standalone DRX PCIe card is limited by the PCIe power supply
standard, which is 25 Watts. Nevertheless, as illustrated in
Figure 4(b), installing multiple Standalone DRX cards can scale
DRX performance with the number of accelerators. However,
this Standalone DRX still incurs bandwidth oversubscription as
the PCIe link to a shared, Standalone DRX card can become
the bottleneck.

Compared to Integrated DRX, a Standalone DRX has the
potential to reduce the data movement if DMX implements
a point-to-point PCIe connection between DRX card and
accelerator cards. This way, a Standalone DRX can localize
the communication under the PCIe switch to which other
accelerator cards are installed.
PCIe-Integrated DRX. This configuration integrates DRX
onto a PCIe switch (Shown in Figure 4(c)). Compared to
a Standalone DRX, A PCIe-Integrated DRX saves a round-
trip between DRX and the PCIe switch. However, PCIe-

Video
Survillence

Sound
Detetcion

Brain
Stimulation

Personal Info
Redaction

Database
Hash Join

0%
20%
40%
60%
80%

100%

Ru
nt

im
e

Br
ea

kd
ow

n
Retiring Bad Speculation Frontend Bound Backend Bound

Fig. 5: Top-down breakdown of stall cycles for data restructuring operations.

Integrated DRX requires DRX to operate at the aggregated
rate of all downstream PCIe ports, which adds considerable
hardware complexity. Also, computation on switches only
permits limited memory usage and a limited number of
instructions per packet [97–100]. This configuration requires
significant engineering effort to redesign the PCIe hardware
and related software stack.
Bump-in-the-Wire DRX. Lastly, we introduce a Bump-in-
the-Wire DRX configuration inspired by Catapult [67] that
connects an exclusive DRX to each accelerator (Figure 4(d)).

Bump-in-the-Wire configuration avoids overprovisioning
of PCIe links and DRX resources for a multi-accelerator
system and enables DMX to scale with the hardware resources
compared with the other configurations. More importantly,
Bump-in-the-Wire DRX placement reduces the data movement
to a minimum when accelerators communicate with each other.
Coupled with a programmable DRX that enables offloading
of any data restructuring operation (c.f., Sec.IV), Bump-in-
the-Wire DRX serves as an option to build future scalable
multi-accelerator systems.

IV. DATA RESTRUCTURING ACCELERATOR (DRX) DESIGN

As discussed in Sec.II, the CPU is not an optimal place to
perform data restructuring operations. In this section, we first
analyze different data restructuring operations by profiling
their execution on the CPU. This analysis guides us in
devising a programmable accelerator specialized for the data
restructuring domain. Refer to Sec.VI for more information on
the experimental setup.

A. Data Restructuring Characterization

Figure 5 shows the top-down [101] breakdown of stall
cycles for data restructuring operations. We characterize data
restructuring operations with the top-down analysis of Intel
VTune [102] on an Intel Xeon Gold 6242R processor. The
processor has the same microarchitecture as our testbed
setup on AWS (See Sec.VI for details). Across different data
restructuring operations, we see at most 12.5% Bad Speculation
Bound and 14% Front-End Bound cycles. A deeper analysis of
Video Surveillance reveals that this distinct behavior is linked to
a higher number of branch instructions, resulting in a relatively
larger number of cycles spent on branch re-steer and uOp
cache switches. On the other hand, the Back-End Bound cycles

range from 53% to up to 77.6% of total cycles. The culprit for
Back-End Bound cycles is both the unavailability of functional
units and misses in the data cache. 23.2% of Back-End Bound
cycles are Core-Bound and 46% are Memory-Bound.

The profiling shows that data restructuring operations have
low L1I cache Misses Per Kilo Instructions (MPKI). The
average L1I MPKI for data restructuring is 2.3. As a reference,
our measurements for online services from CloudSuite [103]
report an average of 7.8 L1I MPKI. Such low L1I MPKI
suggests a small instruction working set for data restructuring
operations that fit inside the L1I cache of the core.

The profiling also shows 50∼215 L1D MPKI and 25∼109
L2 MPKI for data restructuring operations. Such high data
cache MPKI is due to the streaming data access pattern of large
batches of data that are being restructured before passing to a
destination accelerator. The size of each data batch is between
6∼16 MBs, which clearly does not fit in the 1MB L2 cache.
Such a mismatch between dataset size and cache capacity
results in cache thrashing and high data cache MPKI. For
reference, the L2 MPKI of CloudSuite online services is less
than 3. A small staging buffer and a simple next-line prefetcher
can remove the need for large and deep cache hierarchies for
data restructuring operations.

The profiling results show that all data restructuring op-
erations have a high degree of vector unit utilization. The
data restructuring kernels use 100% of available vector unit
capacity which is 256 bits wide AVX-256 on our servers. We
also observe a high number of ephemeral threads that are
spawned by the Intel Math Kernel Library while restructuring
the data. The number of threads that are spawned while running
the data restructuring operations is between 130 to 140. These
threads operate on the data in parallel and illustrate the high
data-level parallelism and inefficiency of CPUs in executing
the data restructuring operations.

B. DRX Hardware Architecture

We use the above insights to design a programmable
DRX that specializes in the data restructuring domain. The
main observations driving DRX design are the abundance
of data-level parallelism, streaming access pattern, and non-
trivial operations of data restructuring. Figure 6 overviews the
architecture of DRX hardware.

DRX uses a decoupled access-execute architecture that
consists of a programmable front-end specialized for walking
over multi-dimensional data structures, and a configurable
number of interleaved vector processing units dubbed Restruc-
turing Engine (RE) in the same pipeline. It also includes a
Transposition Engine for data transposition operations and
a programmable Off-chip Data Access Engine for off-chip
load/store which also houses a DMA engine that initiates
data movement with other accelerators. For evaluation, we
configure the DRX to contain 128 lanes of RE, a 64KB
instruction cache, a 64KB data scratchpad, and 8GB of DDR4
DRAM. A DDR4 3200 memory channel sustains ∼25GBps,
therefore DRX implements a single DDR4 channel to match
the bandwidth of an x8 PCIe Gen 4 link.

Instruc(on
Fetch

Instruc(on
Decode

Strided Address
Calcula(on /

Instruc(on Issue Execute/Write Back

Strided
Scratchpad

Address
Calculator

Off-chip
Data Access

Engine

Instruc(on
Decoder

Instruc(on
Repeater

Instruc(on
Cache

ALU1

Bank1

Restructring
Engine1

Transposi(on
Engine

SRAM

ALU2

Bank2

ALUn

Bankn

Restructring
Engine2

Restructring
Enginen

Func(onal UnitsControl Logic

DEMUX/
MUX

DEMUX/
MUX

DEMUX/
MUX

Fig. 6: DRX Hardware Architecture.

DRX ISA. The DRX ISA and hardware architecture are
optimized based on the observation that data restructuring
workloads consist of known-shape, pre-located multidimen-
sional arrays. Such arrays can be indexed using a set of loops.
As shown in Figure 7, the DRX ISA includes specialized loop,
compute, off-chip memory access, and synchronization instruc-
tions for vector operations while preserving the option for scalar
operations, enabling serial tasks like pointer dereferencing.

The DRX ISA significantly departs from traditional SIMD
semantics, offering optimizations for memory, loops, and data
packing. For memory optimization, DRX employs software-
managed on-chip scratchpads instead of vector register files
and the conventional cache hierarchy found in common SIMD
ISAs. Memory instructions configure the Off-chip Data Access
Engine to fetch data directly from DRAM to the on-chip
scratchpads. For loop optimization, DRX utilizes hardware
loops within an Instruction Repeater unit to reduce branch
instruction overhead. Loop instructions configure the Instruction
Repeater based on the dimensions of the kernel’s multidimen-
sional arrays. For data packing optimization, the DRX compiler
partitions the kernel’s multidimensional arrays across the REs,
eliminating the need for pack/unpack instructions.

During the vector execution, loop instructions first configure
the Off-chip Data Access Engine and Strided Scratchpad
Address Calculator with sets of <Base, Stride, Iteration> con-
figurations that correspond to the input/output loop dimensions
and data location. After the Off-chip Data Access Engine
loads the data to scratchpad banks, compute instruction is
issued with scratchpad addresses calculated by the Instruction
Repeater by traversing the dimensions of multidimensional
arrays based on the configurations in the Strided Scratchpad
Address Calculator. This data access scheme significantly
reduces memory and address calculation overhead and is
applied to all operations on multidimensional arrays such as
data transformation, memory access, and compute operations.
Finally, synchronization instructions are issued at the start and
the end of the instruction stream to ensure proper program
order. For scalar execution, DRX turns off all but one REs and
operates as a scalar in-order CPU.
DRX compiler. Inspired from prior works [104–106] in other
domains, DRX compiler compiles high-level data restructuring
kernels into DRX instructions based on the DRX ISA. The
DRX compiler takes two inputs: a high-level representation of

Operaton Function Loop Dims, Base, Iter, Stride
Operaton Function Dest Addr, Src1 Addr, Src2 Addr
Operaton Function Base/Tile Control, Req Size
Operaton Function Instruction Group, Start/Done

Loop

Compute

Off-chip Memory

Synchronization

2 bits 4 bits 26 bits

Fig. 7: DRX instruction types.

the data restructuring kernel and an architecture configuration
file that defines the DRX hardware configurations such as the
number of REs and on-chip scratchpad size. The compiler
first maps the data restructuring kernel to the intermediate
representation of the kernel operations. It then optimizes tiling
and relaxes dependency on the intermediate representation
based on the hardware configuration and the dimension of
multidimensional arrays. Finally, it generates instructions based
on DRX ISA from the optimized intermediate representation.
Figure 8 shows a sample of the DRX kernel.

V. SYSTEM INTEGRATION AND PROGRAMMABILITY

In this section we discuss the system integration and pro-
grammability of DMX with Bump-in-the-Wire DRX placement.
The system integration of other DRX placements share many
similarities with Bump-in-the-Wire DRX.
Programming model. DMX implements an OpenCL-style
programming model that has a host program on the CPU
and kernels on accelerators or DRX. Application kernels are
executed on accelerators while data restructuring kernels are
executed on DRX. Because DMX runs the control plane on the
CPU, it does not compromise the programmer’s productivity
and does not incur any additional accelerator orchestration
overhead compared to the baseline multi-acceleration system.

The host program creates an execution context for each
instance of the application kernel or data restructuring kernel.
The context includes (1) the hardware – e.g. the accelerator
or DRX– involved in the applications, (2) application or data
restructuring kernels, and (3) a per accelerator command queue
that is mapped to the global host address space. The command
queue is used for buffering the output of the application kernels
and the restructured input of the next application kernel before
being transferred to the destination.

The host program uses user-level OpenCL API to create
the execution context. It also uses the API to interact with
the accelerators and DRXs through their own command queue
on each device. The command queue accepts commands to
enqueue kernels for execution, transfer data, or synchronize
memory buffers. The execution of a command can be blocking
or non-blocking. Blocking execution does not return to the host
program before the current command completes. Non-blocking
execution, on the other hand, requires a detailed description
of the dependency between kernels and data restructuring
programs. For a single command queue, the queued commands
are executed in the order they are enqueued.

The application kernels execute domain-specific kernels of
the end-to-end application on different accelerators. The data
restructuring kernels perform the required data restructuring

Fig. 8: Sample DRX kernel.

Headrx1Tailrx1

TX1 RX2 TX2 TXnRXnRX1

Fig. 9: RX/TX data queue pair architecture in Bump-in-the-Wire DRX. DRX uses
the data queue as a circular buffer with head and tail pointers. The output of the
accelerator that is destined for Acceleratori is enqueued in RXi before being
restructured and stored in T Xi for transmission to Acceleratori. Current DRX
implementation supports up to a total n = 40 accelerators.

operations when two accelerators are communicating. The
host program executes the serial portion of the application
and runs a daemon to orchestrate the execution of application
and data restructuring kernels running on accelerators and
DRXs, respectively. The data restructuring kernels are shipped
to DRXs that understand the exact input and output format of
each accelerator. The data restructuring kernels are engaged
to ensure that properly structured input/output data is moved
directly between accelerators and DRX.
Driver support for DMX. At a high level, DMX enumerates
both accelerators and DRXs as PCIe devices connected to the
CPU. Each DRX unit has a driver to initialize the command
queues, exchange the start and end pointers of the queue to other
DRXs at the start, and orchestrate data restructuring operations.
The drivers use GEM [107, 108] for command executions and
memory-related operations. DRX driver executes commands
and reads/writes/maps operations using ioctl syscall. For setting
up point-to-point DMA between DRX and accelerators, the
drivers use dma-buf API [109]. The vendor-specific accelerator
drivers should support point-to-point DMA in order to work
with DMX. By default, we operate accelerators and DRXs
in interrupt mode for sending notifications to the CPU. The
interrupt handling of the drivers utilizes interrupt coalescing for
the bursty arrival of interrupts. If the arrival rate of interrupts
exceeds a certain threshold, the drivers switch to polling. This
design is similar to Linux NAPI design [110].

Although Bump-in-the-Wire DRX is attached to each accel-
erator, each DRX unit should be able to set up a point-to-point
connection with all the other accelerators and DRXs in the
system. The memory address space of each DRX is statically
partitioned between all the accelerators as well as DRXs in
the system to implement two pairs of RX/TX data queues

PCIe

Accelerator1

Accelerator2

CPU

DRX1

DRAM

DRAM

DRAM
DRAM

1

11

4

5 7

10

2
3

9

9
8

DRX2

6

Fig. 10: Point-to-point DMA workflow involves two accelerators and the sending
side DRX. The DMA bypasses the receiving side DRX. DMX supports other
communication patterns such as broadcast and multicast among DRXs and
between DRXs and accelerators.

per accelerator on each DRX: one pair of queues for direct
DRX-accelerator communication and another pair of queues
for DRX-DRX communication.

The number of accelerators is determined at PCIe enumera-
tion time when it discovers connected accelerators that need
data restructuring. We provision 8GB of memory space for
implementing data queues on each DRX. The size of each data
queue pair is 100MB. This will enable DMX to support up
to 40 accelerators on a server. DRX driver maintains a head
and tail pointer for each data queue to keep track of the data
that is enqueued for restructuring. RX and TX data queues on
a DRX are shown in Figure 9. A point-to-point DMA moves
data between data queue pairs and accelerator memory.

GEM allocates and frees data buffers opaquely because it is
agnostic to the data content in the buffer. The allocated data
buffers are referred to by their handle, which is equivalent to
a file descriptor.
End-to-end data motion acceleration. Figure 10 shows
the interactions between accelerators, CPU, and Bump-in-
the-Wire DRX when Accelerator1 tries to communicate with
Accelerator2. Although Figure 10 depicts the accelerator and
its DRX as separate chips with separate DRAM modules,
DRX can be integrated into the accelerator chip and share its
physical DRAM modules. YesWhen Accelerator1 completes
kernel execution in step 1 , it raises an interrupt to the CPU
in step 2 . The driver of Accelerator1 captures the interrupt
and setup a point-to-point DMA between Accelerator1 and
the TX data queue corresponding to Accelerator2 on DRX1.
DRX1’s driver shares the offset of RX2 data queue (i.e., RX
data queue corresponding to Accelerator2) in step 3 with
Accelerator1. This enables the Accelerator1 to access and
write to the RX2 data queue on DRX1. A DRX driver then
configures Accelerator1 to perform a point-to-point DMA and
move data from Accelerator1’s memory to the next available

Benchmark Kernel 1 Kernel 1 Accelerator Data Restructuring Kernel 2 Kernel 2 Accelerator Input Dimension
Video
Surveillance [84]

H.264 Codec
Xilinx Video
Codec Unit [111]

Mul, MaxPool,
Reshape, Cast

Object
Detection

DNN Accelerator [13] (960, 540, 3)

Sound
Detection [85]

FFT
Xilinx Vitis
DSP Library [112]

Pow, Add, Mul,
Div, Log10, Cast

Support Vector
Machine

Xilinx Vitis Data
Analytics Library [113]

(8192, 768)

Brain
Stimulation [86]

FFT
Xilinx Vitis
DSP Library [112]

Pow, Div, Mul,
Cast

Proximal Policy
Optimization

DNN Accelerator [13] (256, 1024, 8)

Personal Information
Redaction [87]

AES-GCM
Xilinx Vitis
Security Library [114]

Concat, Flatten
Regular
Expression

Xilinx Vitis Data
Analytics Library [113]

(4, 2048, 768)

Database Hash Join
[82]

Gzip
Xilinx Vitis Data [115]
Compression Library

Concat, Reshape,
Cast

Hash Join
Xilinx Vitis
Database Library [116]

(4, 1024, 512)

TABLE I: End-to-end benchmarks

buffer in RX2 data queue on DRX1 in step 4 . The DRX
processing unit on DRX1 reads the output on Accelerator1’s
memory from RX2 data queue, performs data restructuring,
and writes the output to the next available buffer in T X2 data
queue as shown in step 5 to 7 . In step 8 , DRX1 raises
an interrupt to the CPU to notify the DRX1 driver about the
completion of data restructuring. Next, a point-to-point DMA
is configured between DRX1 and Accelerator2 in step 9 . In
step 10 , point-to-point DMA between DRX1 and Accelerator2
passes through an internal PCIe multiplexer without invoking
DRX2 because it does not need further data restructuring on it.
In step 11 , Accelerator2 runs the kernel on its DRAM.
One-to-many and many-to-one data movement. Supporting
broadcast and multicast between the accelerator chain is
necessary for load balancing as well as efficient collective
communication implementation. The workflow of such move-
ment patterns is similar to that of Figure 10, except that for
one-to-many, the source DRX transfers the restructured output
of the source accelerator to multiple accelerators (or DRXs)
using multiple back-to-back point-to-point DMA transfers.
Variations of many-to-one data movement can be used to
implement reduction collectives by setting up direct data
transfer from multiple source DRXs to a single destination
DRX that also performs the reduction operation. The DMX
support for broadcast and multicast facilitates the efficient
implementation of various collective operations.

VI. EXPERIMENTAL METHODOLOGY

Benchmarks. We create five diverse cross-domain and end-to-
end applications inspired by real-world scenarios. Table I lists
the five benchmark applications, their cross-domain kernels and
corresponding accelerators, the data restructuring operations
needed to chain the kernels, and the dimensions of the input
data. Each application is a pipeline of two kernels, where the
first kernel outputs intermediate data, which requires restructur-
ing before it can be processed by the second kernel. The Video
Surveillance decodes input video streams into video frames and
passes them to an object detection kernel [117]. Sound Detection
performs Fast Fourier Transform (FFT) on audio snippets and
use the transformed snippets to determine the genre of input
audio [85]. Brain Stimulation receives electromagnetic input
signal generated from a brain simulation model, processes it
with FFT and data restructuring operations before outputting the
data to reinforcement learning kernel [86]. Personal Information

Redaction decrypts privacy-sensitive text and uses a regular
expression kernel to detect personally identifiable information
and redact them from the text with blanks [87]. Database
Hash Join decompresses database tables and hash joins the
tables [82, 83]. To exercise the system performance with respect
to resource contention on interconnect bandwidth and compute
for data restructuring, we use 1, 5, 10, to 15 concurrent running
applications for the benchmarks.
DRX hardware implementation. We implement DRX using
Verilog in RTL and synthesize it on Xilinx UltraScale+
VU9P FPGA using Xilinx Vivado 2022.2. The synthesized
design achieves an operating frequency of 250 MHz. We also
synthesize an ASIC version of DRX using Synopsys Design
Compiler R-2020.09-SP4 with the FreePDK 15nm standard
cell library [118]. The ASIC implementation achieves a 1 GHz
operating frequency.
Baseline FPGA-based multi-acceleration system. Beside
DRX, we also synthesize application kernels discussed earlier
in this section on FPGA to implement a baseline multi-
acceleration system without data motion acceleration (i.e., that
uses CPU for performing data motion). This setup consists
of multiple AWS Xilinx UltraScale+ VU9P FPGAs [119]
connected through PCIe x16 to Intel Xeon Platinum 8260L
CPUs operating at 2.4 GHz with 64 GB of memory and
hyperthreading disabled.

We implement the application kernels on the FPGA using
the following methods: hard-IP blocks, High-Level Synthesis
(HLS), or Register-Transfer Level (RTL) implementation. For
the video codec kernel, we use a pre-existing hard-IP available
on the VT1 instance of AWS [120]. We use Xilinx’s Vitis
libraries [121], which provide HLS implementations, for kernels
such as FFT, support vector machine, AES-GCM, Gzip decom-
pression, regular expression, and database hash join. We use
the RTL implementation from open-sourced accelerators [13]
for the remaining kernels that use deep neural networks such
as object detection and proximal policy optimization. We
synthesize both the HLS and RTL implementations on the
FPGAs operating at 250 MHz clock frequency.

In this FPGA multi-acceleration implementation the host
CPU runs the control plane (refer to Sec.V) and performs the
data restructuring operations while the FPGAs accelerate the
application kernels.
Performance evaluation. We use the FPGA setup to collect
cycle-level latency of executing end-to-end applications on a

Video
Survillence

Sound
Detetcion

Brain
Stimulation

Personal Info
Redaction

Database
Hash Join

GeoMean
0.0×
2.0×
4.0×
6.0×
8.0×

10.0×
12.0×
14.0×

Sp
ee

du
p

DM
X/

M
ul

ti-
Ax

l

2.
5 3.

3

2.
5

5.
4

3.
8

3.
5

3.
6 5.

0

4.
8 5.

8 6.
7

5.
2

4.
2

6.
6

6.
7

6.
4

8.
8

6.
3

5.
1

9.
2 9.
4

7.
2

11
.5

8.
2

 1 app 5 apps 10 apps 15 apps

Fig. 11: DMX speedup over Multi-Axl configuration that uses CPU for data
motion between accelerators. DMX performance scales with the number of
concurrent applications by using Bump-in-the-Wire DRX placement.

baseline without data motion acceleration (we refer to this
baseline as Multi-Axl configuration in Sec.VII). We then scale
the performance of FPGA acceleration using scaling factors
based on ASIC implementation and clock frequency (250
MHz to 1GHz). We develop an end-to-end system emulation
infrastructure to compare the performance of various DMX
configurations with a multi-acceleration baseline without DMX.
The input to the emulation setup are cycle-level latency numbers
for executing application kernels, data restructuring on the
CPU or DRX, communication over PCIe, and software stack
overheads for interrupt and polling.
Energy evaluation. We measure the energy of the CPU using
Intel RAPL [122]. We use the post-synthesis power of the
FPGA and multiply it by the execution time of the kernels to
estimate the energy consumption for the accelerators. We also
include the energy consumption of the PCIe switch [123] and
the energy for data transfer over PCIe [124].

VII. EXPERIMENTAL RESULTS

A. End-to-end Performance Improvement

Speedup. Figure 11 compares the end-to-end execution time
of cross-domain applications withiout (Multi-Axl) and with
DMX. Note that uses Bump-in-the-Wire DRX placement. On
average, accelerating the data motion provides 3.5× to 8.2×
speedup for running one to 15 concurrent applications. The
higher the number of accelerators in use, the greater the data
motion between the accelerators. Therefore, as DRX accelerates
the data restructuring portion of the end-to-end application,
the speedup grows as the number of concurrent applications
increases. DMX yields less end-to-end speedup for Video
Surveillance because the accelerator used for Video Surveillance
provides less speedup compared to the other benchmarks. The
speedup of DMX is more pronounced for Database Hash
Join because the data restructuring takes up the majority of
the runtime for this benchmark which is significantly being
accelerated by DRX.

To better understand the sources of benefits, Figure 12(a)
and Figure 12(b) report the runtime breakdown for Multi-Axl
baseline and DMX across the three main runtime components:
accelerated kernels time, data restructuring, and data movement
time between CPU and accelerator for Multi-Axl and between

Video
Surveillance

Sound
Detec0on

Brain
S0mula0on

Personal Info
Redac0on

Database
Hash Join

(a) The runtime breakdown of Multi-Axl.

Video
Surveillance

Sound
Detec0on

Brain
S0mula0on

Personal Info
Redac0on

Database
Hash Join

(b) The runtime breakdown of DMX.

Fig. 12: The latency breakdown of the Multi-Axl baseline and DMX. DMX shrinks
data restructuring ratio from 64.1% to 14.1% in average.

accelerators for DMX. Kernel execution latencies are the same
for both Multi-Axl and DMX. However, after we apply DMX
(Figure 12(b)), the kernel execution takes up larger portion of
the runtime breakdown compared to the baseline (Figure 12(a)).

As shown in Figure 12(a), data restructuring accounts for the
largest portion of the end-to-end runtime for the baseline. Data
restructuring is on average 66.8%, 55.7%, 64.7%, and 71.7%
of multi-acceleration end-to-end latency for 1, 5, 10, and 15
concurrent applications, respectively. Using DRX significantly
accelerates data restructuring and shrinks data restructuring
overhead to 17.0%, 15.3%, 13.5%, and 7.2% of DMX end-
to-end latency for 1, 5, 10, and 15 concurrent applications,
respectively, as shown in Figure 12(b). Increasing the number
of concurrent applications requires more accelerators, meaning
more computation for data restructuring operations between
accelerators. Furthermore, the data movement in the baseline
system increases due to the bandwidth bottleneck caused
by multiple accelerators sharing the PCIe switch’s upstream
bandwidth. On the contrary, DMX accompanies each accelera-
tor with its own local DRX and therefore avoids bandwidth
contention on shared PCIe links.
Throughput improvement. Although the end-to-end execution
latency of each request is important, in a real world setup, an
application receives back to back requests that need to be
processed in the cross-domain application pipeline. Therefore,
assuming that each application consists of three pipeline stages

Video
Survillence

Sound
Detetcion

Brain
Stimulation

Personal Info
Redaction

Database
Hash Join

GeoMean
0.0×
4.0×
8.0×

12.0×
16.0×
20.0×
24.0×
28.0×

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t
DM

X/
M

ul
ti-

Ax
l

5.
1

2.
5

2.
0

1.
5

7.
0

3.
0

10
.2

6.
8

5.
6

2.
7

12
.7

6.
6

10
.9

11
.3

11
.2

4.
3

18
.0

10
.1

15
.3

13
.4

13
.0

7.
8

22
.8

13
.6

 1 app 5 apps 10 apps 15 apps

Fig. 13: DMX throughput improvement over Multi-Axl. DMX resolves the
throughput bottleneck of data restructuring and shifts the throughput bot-
tleneck to the accelerated kernel.

Integrated Standalone Bump-in-the-Wire PCIe-Integrated
0.0×
2.0×
4.0×
6.0×
8.0×

10.0×

Sp
ee

du
p

DM
X/

M
ul

ti-
Ax

l

3.
4

3.
5

3.
5

3.
5

2.
6 3.

9 5.
2 5.
5

3.
5

5.
4 6.

3 7.
1

4.
4

6.
5

8.
2 9.

1

 1 app 5 apps 10 apps 15 apps

Fig. 14: Comparison of end-to-end latency speedup with different DRX
placements: Integrated DRX integrates a shared DRX on the CPU. Standalone
DRX implements DRX as a standalone PCIe card shared by accelerators. Bump-
in-the-Wire DRX is an exclusive DRX to each accelerator. PCIe-Integrated DRX
integrates shared DRXs with PCIe switches connecting accelerators.

(first kernel, data motion, and second kernel as shown in
Figure 2), the throughput of an application is determined by
the latency of the slowest stage. We compare the throughput
of Multi-Axl baseline and DMX assuming continuous arrival
of requests for each application.

Figure 13 shows the throughput improvement of DMX over
the multi-acceleration baseline. On average, DMX achieves
from 3.0× to 13.6× throughput improvements when running
one to 15 concurrent applications, respectively. Data restruc-
turing is the slowest stage of the application pipeline in the
Multi-Axl baseline as demonstrated in Figure12(a). Hence it is
the throughput bottleneck for all benchmarks, especially as the
number of concurrent applications increases. DMX leverages
DRX to address this bottleneck and shifts the throughput
bottleneck to the accelerated kernel. Personal Info Redaction
shows relatively low improvement on the throughput as its
throughput is limited by its regular expression kernel accelerator.
Data movement is not the throughput bottleneck for the Multi-
Axl baseline because the PCIe bandwidth never gets saturated
due to the poor throughput of data restructuring operations on
the CPU.

B. DRX Placement Analysis

One of the critical design decisions in DMX is the location of
the DRX in the system: Integrated, Standalone, Bump-in-the-
Wire, PCIe-Integrated. This is because the placement of DRX
impacts the data movement and the overall system design.

Speedup with different DRX placements. Figure 14 compares
the latency speedup between Integrated DRX, Standalone
DRX, Bump-in-the-Wire DRX, and PCIe-Integrated DRX. The
figure reports the average speedup across the five benchmarks
for one to 15 concurrent applications. For all setups from
one through 15 concurrent applications, the results show that
the speedups compared to the Multi-Axl baseline are in the
following order: Integrated ≤ Standalone ≤ Bump-in-the-Wire
≤ PCIe-Integrated.

Integrated DRX shows 4.4× speedup with 15 concurrent
applications compared to the baseline where data restructuring
is performed on the CPU. However, when running more than
one application in Integrated DRX, the concurrent applications
contend for the shared DRX computation resources on the
CPU and the PCIe bandwidth to access the shared DRX. The
upstream port of the PCIe switch connecting to the CPU uses
a single link (8 lanes) while the downstream ports connecting
to accelerators use multiple links. Also, a PCIe transaction
pays 110 ns or more port-to-port latency tax to get through
a PCIe switch [123]. Despite the significant overhead from
the contended PCIe links, Integrated DRX’s speedup relative
to the baseline increases as we add more accelerators. This
demonstrates the benefits of using DRX instead of general-
purpose CPU cores for data restructuring operations.

Standalone DRX shows 3% and 48% improvements com-
pared to the Integrated for one and 15 concurrent applications,
respectively. In the Integrated DRX, we have a single DRX
that is integrated to the CPU for the entire system. On the
other hand, the Standalone configuration scales the number of
DRX with the number of concurrent applications by inserting
more DRX PCIe cards. Therefore, the speedup compared to
Integrated DRX can be attributed to the larger number of DRX
in the system.

Bump-in-the-Wire DRX achieves 33%, 17%, and 26% higher
speedup for 5, 10, and 15 concurrent applications compared
with Standalone DRX. Bump-in-the-Wire DRX keeps its point-
to-point DMA traffic between accelerators and DRX under
the same PCIe multiplexer so the accelerators do not need to
contend for PCIe bandwidth as in Standalone DRX placement
on the CPU.

PCIe-Integrated DRX shows the highest speedup. The
improvement of PCIe-Integrated DRX against Bump-in-the-
Wire DRX comes from the saving of a round-trip between
the source DRX and the source PCIe multiplexer and a pass-
through of the destination PCIe multiplexer. However, it is
important to note that the integration of DRX with a PCIe
switch requires in-depth modification to make the PCIe switch
programmable and process data at the line rate. In other words,
despite the luring benefits, the prohibitive level of engineering
effort to achieve it makes the Bump-in-the-Wire a reasonable
choice of DMX design that can achieve significant speedup
with relatively affordable engineering efforts.
Energy reduction with different DRX placements. Figure 15
shows system-wide energy reduction provided by different DRX
placements compared to Multi-Axl baseline. Integrated DRX
provides 3.4×, 3.9×, 4.0×, and 4.0× of energy reduction.

Integrated Standalone Bump-in-the-Wire
0.0×

2.0×

4.0×

6.0×

8.0×
En

er
gy

 R
ed

uc
tio

n
DM

X/
M

ul
ti-

Ax
l

3.
4

3.
4 3.

83.
9 4.
2 4.
3

4.
0

6.
1

4.
8

4.
0

6.
5

5.
2

 1 app 5 apps 10 apps 15 apps

Fig. 15: System-wide energy reduction, including host CPU cores, accelerators,
and DRXs. Bump-in-the-Wire DRX achieves less reduction than Standalone
DRX due to its internal PCIe multiplexer shown in Fig. 4d. Integrated, Stan-
dalone, and Bump-in-the-Wire DRX draw up to 26%, 23% and 28% more power
than the Multi-Axl baseline. PCIe-Integrated is not included because we are
not able to estimate the power of a DRX-integrated PCIe switch.

The energy reduction does not scale with the number of
concurrent applications because it only benefits from the
energy efficiency of the DRX hardware acceleration for data
restructuring operations. Standalone DRX and Bump-in-the-
wire DRX provide energy reduction scaling with the increased
number of concurrent applications. Bump-in-the-wire DRX
placement delivers the best energy reduction of 3.8× and
4.3× for 1 and 5 concurrent applications. Standalone DRX
delivers the best energy reduction of 6.1× and 6.5× for 10 and
15 concurrent applications because of the reduced bandwidth
contention on PCIe links. This is because the extra glue logic
and the dual-port PCIe multiplexer are replicated in each Bump-
in-the-Wire DRX placement, while such overhead is amortized
across the applications on a large Standalone DRX. PCIe-
Integrated is not evaluated for energy reduction because of
the difficulty of estimating the energy consumption of a PCIe
switch integrated with DRX.

C. Sensitivity Studies

Speedup with more than two kernels. As real-world ap-
plications can consist of multiple kernels across domains,
it is important for DMX to scale beyond two kernels. To
evaluate DMX’s scalability with multiple application kernels,
we add a third application kernel to the Personal Info Redaction
benchmark, along with its additional data restructuring kernel
consisting of reshaping and typecasting. This third kernel is a
Transformer model fine-tuned for Named Entity Recognition
(NER). NER identifies personal and sensitive information that
is hard to capture for regular expression kernel [125]. We use
an open-source BERT implementation for the kernel [126].
Figure 16(a) shows the runtime breakdown of this three-kernel
benchmark. Although the benchmark included the compute-
intensive NER kernel, the runtime is still dominated by the
data restructuring kernels for the Multi-Axl baseline. DMX
alleviates the bottleneck of data motion and restores kernel
to be the largest contributor that represents 97.2% to 93.7%
of the end-to-end execution time for one to 15 concurrent
applications. As such, DMX provides 1.9× to 4.2× speedup
for one to 15 concurrent applications shown in Figure 16(b).

Mul$-Axl DMX

(a) Runtime breakdown

 1 app 5 apps 10 apps 15 apps
0.0×

1.5×

3.0×

4.5×

Sp
ee

du
p

DM
X/

M
ul

ti-
Ax

l

1.
9 2.

6 3.
1

4.
2

(b) Speedup

Fig. 16: DMX reduces data motion overhead to less than 5% for Personal Info
Redaction benchmark extended with Named Entity Recognition kernel.

One-to-many and many-to-one data movement. Cross-
domain multi-acceleration of end-to-end applications entails
using multiple accelerators. The data movements in multi-
acceleration, however, are not necessarily always one-to-one but
likely include one-to-many and/or many-to-one data movement
between accelerators. Therefore, we want to analyze whether
DMX design can cope with the one-to-many and/or many-
to-one data movements in multi-acceleration. To this end,
we compare Bump-in-the-Wire DRX against the Multi-Axl
baseline for one-to-many (i.e., broadcast) and many-to-one
(all-reduce) data movement using 4 to 32 accelerators. For
broadcast, the baseline first passes the output of the source
accelerators to the main memory of the CPU using DMA.
After data restructuring on the CPU, the driver then copies the
restructured data and initiates N DMA transfers sequentially to
the destination accelerators. All-reduce has two stages: scatter-
reduce and all-gather. Both require similar DMA transfers
between CPU and accelerators; however, scatter-reduce entails
additional steps to first sum the inputs from sources and then
scatter the outputs to all destinations. On the contrary, DMX’s
implementation of broadcast and all-reduce utilizes the Bump-
in-the-Wire DRX for data restructuring and data movement.

Figure 17 shows that the DMX achieves 3.7× to 5.2×
speedup on broadcast and 5.1× to 10.5× speedup for all-
reduce on 4 to 32 accelerators. This is because DMX utilizes
DRXs to (1) perform data restructuring and the DMA transfers
in parallel and (2) eliminate the extra DMA transfers between
the accelerators and the CPU. Furthermore, for all-reduce,
DMX uses DRX to accelerate the summation operations. The
speedup also scales with the number of accelerators because
the amount of data restructuring and data movement scale
accordingly to the number of accelerators. There is a dip

4 Accelerators 8 Accelerators 16 Accelerators 32 Accelerators
0.0×
2.0×
4.0×
6.0×
8.0×

10.0×
12.0×

Sp
ee

du
p

DM
X/

M
ul

ti-
Ax

l

3.
7 4.

6

4.
4 5.

2

5.
1

9.
7

7.
3

10
.5

Broadcast All-Reduce

Fig. 17: DMX eliminates redundant DMA transfers and performs DMA in parallel
for broadcast and all-reduce on multi-accelerator setup.

32 lanes 64 lanes 128 lanes 256 lanes
0.0×
4.0×
8.0×

12.0×
16.0×
20.0×
24.0×

Sp
ee

du
p

DM
X/

M
ul

ti-
Ax

l

0.
5 1.
2

5.
0

5.
2

1.
0 2.

4

9.
8 10
.2

1.
4 3.

6

14
.9

15
.2

2.
1 5.

3

21
.8

20
.1

 1 app 5 apps 10 apps 15 apps

Fig. 18: Data restructuring latency speedup with different numbers of RE lanes
on DRX. The increase of speedup is limited after 128 lanes. which is our default
configuration.

PCIe Gen 3 PCIe Gen 4 PCIe Gen 5
0.0×

2.0×

4.0×

6.0×

8.0×

10.0×

Sp
ee

du
p

DM
X/

M
ul

ti-
Ax

l

3.
5

3.
4

3.
3

5.
2

5.
1

4.
3

6.
3

5.
9

5.
8

8.
2

7.
9

7.
8

 1 app 5 apps 10 apps 15 apps

Fig. 19: DMX speedup across generations of PCIe. PCIe Gen4 and Gen5 result in
a slight decrease of speedup because their corresponding Multi-Axl baselines
improve more than their DMX counterparts.

when using 16 or more accelerators, but this is due to the
additional latency on the PCIe switches that scales with the
number of accelerators. DMX achieved higher speedup in all-
reduce compared to broadcast because all-reduce involves more
DMA transfers and data restructuring which provided more
acceleration opportunity using DRX.
DRX hardware configurations. To understand the sensitivity
of DMX to the amount of compute resources in DRX, we sweep
the number of RE lanes for DRX and compare its performance
to the Multi-Axl baseline that performs data restructuring on
CPU. Figure 18 shows the speedup achieved for the different
number of lanes for DRX: from 32 to 256. The speedup
improves with the number of lanes increasing up to 128
lanes by taking advantage of available data parallelism in
data restructuring operations. However, the increase of speedup

of DRX is limited after 128 RE lanes, and increasing the lanes
to 256 does not provide noticeable benefits. Therefore, we use
128 RE lanes as the default configuration for DRX throughout
the experiments.
Different PCIe generations. Newer PCIe generation provides
significantly more bandwidth and the increased bandwidth
can potentially negate the performance benefit of DMX. To
understand the impact of different generations of PCIe, we
compare the Bump-in-the-Wire DRX latency speedup on PCIe
Gen 3 with PCIe Gen 4 and Gen 5. Figure 19 shows that
using PCIe Gen 4 and Gen 5 resulted in a slight decrease
of speedup because their corresponding Multi-Axl baselines
improve more than their DMX counterparts. Across PCIe
generations, the baselines and DMX show different levels of
improvement only in data movement latency. Such differences
come from the following two reasons. First, the baselines face
more bandwidth contention than the DMX and thus benefit
more from the increased PCIe bandwidth per lane. Second, the
baselines are able to use more PCIe lanes to reduce bandwidth
contention from accelerators to CPUs with PCIe Gen 4 and
Gen 5 compared to CPUs with PCIe Gen 3 [127–129]. The
results shown in Figure 19 suggests that the bottleneck of
Multi-Axl configuration is not just the PCIe interconnect, but
also the data restructuring computation.

VIII. RELATED WORK

Real-world applications span multiple domains, posing a
challenge for end-to-end acceleration. While the research com-
munity has explored accelerators across diverse domains [56–
63, 80–84], the adoption of these heterogeneous accelerator to
accelerate a single end-to-end application is challenging. The
challenge arises due to the diverse data formats generated and
consumed by each accelerator. This necessitates restructuring
inputs and outputs across accelerators. While some prior works
have focused on performed data restructuring using CPUs, this
paper introduces the concept of Data Motion Acceleration
(DMX) for efficient cross-domain multi-acceleration with
heterogeneous DSAs. We review the most relevant related
work in three areas: data movement, data restructuring, and
interconnect fabrics integration below.
Data movement. Prior works studied point-to-point data move-
ment between GPUs [130], between GPU and storage [131–
133], between NIC and accelerator [134–136], and between
on-chip accelerators [137]. Prior works have used various
techniques such as scheduling [135, 136, 138–140] to co-locate
multiple domains on the same system. While these works only
optimize the data movement, non-trivial operations of the data
restructuring still consumes a significant fraction of the data mo-
tion. Intel Data Stream Accelerator [141] and DCS [142, 143]
share a similar insight, both lack programmability and hence
have limited capacity to optimize data restructuring. This work
in contrast leverages DRXs as a compute-enabled glue that
links different heterogeneous accelerators together and makes
them appear as a monolithic but composable accelerator for
the application.

Data restructuring. For message serialization, Optimus
Prime [144] and Protobuf accelerator [145] design an ac-
celerator for RPC message serialization. HGum [146] and
Fletcher [147] implement serialization on FPGAs for accelera-
tion. For machine learning pipelines, tf.data [148], DSI [149],
DALI [150] optimize data restructuring on GPU with pro-
grammable operations. In contrast to these prior works that
only optimize data restructuring for a single accelerator, this
paper investigates data restructuring and movement for multi-
acceleration with heterogeneous devices.
Interconnect fabrics. Previous works have used PCIe’s Non-
Transparent Bridge (NTB) to enable PCIe to support multiple
hosts with more than one root complex, which performs address
translation for operations in a specific memory range [151, 152].
Point-to-point DMA over PCIe fabric is enabled by a shared
address space across all devices [153]. CXL 3.0 or later allows
accelerators on different servers to be connected seamlessly by
using fabric switching to link racks of devices and accelera-
tors [88]. DUA [154] creates an overlay fabric on top of the
existing physical communication stacks, such as PCIe, Ethernet,
DDR, etc. These works can connect accelerators without
addressing data restructuring for multi-acceleration. This work,
however, tackles data motion challenges to maximize the
performance of multi-acceleration.

IX. CONCLUSION

In this work, we quantified the data motion cost of chaining
heterogeneous Domain-Specific Architectures (DSAs) for cross-
domain multi-acceleration. The results showed that the data
motion overhead curtails the end-to-end speedup of accelerating
each domain on a set of heterogeneous DSAs. The paper
introduced DMX that seamlessly weaves together multiple
accelerators that deliver the performance of a large, monolithic
cross-domain accelerator. On average, Data Motion Accelera-
tion (DMX) provides between 3.4× to 8.2× speedup, 3.0× to
13.6× higher throughput, and 3.8× to 5.2× energy reduction.

Even with current single-domain DSAs, overheads of moving
data on- and off-chip is presently a dominant factor that limits
the performance and energy efficiency of gains [89, 155].
The impact of the data motion–highlighted in this paper–will
worsen when cross-domain accelerators are chained in future
datacenters to cater to the requirements of emerging end-to-end
applications. This even includes the multimodal generative AI
applications that use multiple models and require acceleration
beyond neural networks (e.g., vector database lookups, search,
etc.). Heterogeneous/3D integration coupled with emerging
high-bandwidth chiplet-to-chiplet interconnects such as UCIe
can improve data movement, but not data restructuring that
requires computation. As such, embedding our DMX concept
and architecture within these interconnects can synergistically
unlock the the potential of cross-domain multi-acceleration for
next-generation dataceneters.

ACKNOWLEDGMENT

This work was in part supported by generous gifts from
Google, Microsoft, Samsung, Qualcomm, AMD Xilinx as

well as the National Science Foundation (NSF) awards
CCF#2107598, CNS#1822273, National Institute of Health
(NIH) award #R01EB028350, Defense Advanced Research
Project Agency (DARPA) under agreement number #HR0011-
18-C-0020, and Semiconductor Research Corporation (SRC)
award #2021-AH-3039. This work was also supported in part by
ACE, one of the seven centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes not withstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied of Google, Qualcomm, Microsoft,
Xilinx, Samsung, IBM, NSF, SRC, NIH, DARPA or the U.S.
Government.

REFERENCES

[1] Abraham Gonzalez, Aasheesh Kolli, Samira Khan,
Sihang Liu, Vidushi Dadu, Sagar Karandikar, Jichuan
Chang, Krste Asanovic, and Parthasarathy Ranganathan.
Profiling hyperscale big data processing. In Proceed-
ings of the 50th Annual International Symposium on
Computer Architecture, ISCA ’23, New York, NY, USA,
2023. Association for Computing Machinery. ISBN
9798400700958. doi: 10.1145/3579371.3589082. URL
https://doi.org/10.1145/3579371.3589082.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bas-
sous, and A. R. LeBlanc. Design of ion-implanted
MOSFET’s with very small physical dimensions. JSSC,
1974.

[3] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant,
Karthikeyan Sankaralingam, and Doug Burger. Dark
silicon and the end of multicore scaling. In 2011
38th Annual International Symposium on Computer
Architecture (ISCA), pages 365–376, 2011.

[4] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31(4):6–15,
July–Aug. 2011.

[5] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Sat-
urnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez,
Steven Swanson, and Michael Bedford Taylor. Conserva-
tion cores: Reducing the energy of mature computations.
In Proceedings of the Fifteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, 2010.

[6] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang,
Chengyong Wu, Yunji Chen, and Olivier Temam. Di-
annao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning. In ASPLOS, 2014.

[7] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan,
Bingjun Xiao, and Jason Cong. Optimizing fpga-
based accelerator design for deep convolutional neural
networks. In FPGA, 2015.

[8] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou,
Shengyuan Zhou, Olivier Teman, Xiaobing Feng, Xuehai

https://doi.org/10.1145/3579371.3589082

Zhou, and Yunji Chen. Pudiannao: A polyvalent machine
learning accelerator. In ASPLOS, 2015.

[9] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne,
Ling Li, Tao Luo, Xiaobing Feng, Yunji Chen, and
Olivier Temam. Shidiannao: shifting vision processing
closer to the sensor. In ISCA, 2015.

[10] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo,
Yuan Xie, Yunji Chen, and Tianshi Chen. Cambricon:
An instruction set architecture for neural networks. In
ISCA, 2016.

[11] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan,
Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen, and Yunji
Chen. Cambricon-x: An accelerator for sparse neural
networks. In MICRO, 2016.

[12] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng
Liu, and Xiaowei Li. C-brain: A deep learning acceler-
ator that tames the diversity of cnns through adaptive
data-level parallelization. In DAC, 2016.

[13] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel
Amaro, Joon Kim, Chenkai Shao, Asit Misra, and Hadi
Esmaeilzadeh. From high-level deep neural models to
fpgas. In MICRO, 2016.

[14] Manoj Alwani, Han Chen, Michael Ferdman, and Peter
Milder. Fused-layer cnn accelerators. In MICRO, 2016.

[15] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik
Sharma, Amir Yazdanbakhsh, Joon Kyung Kim, and
Hadi Esmaeilzadeh. Tabla: A unified template-based
framework for accelerating statistical machine learning.
In HPCA, 2016.

[16] Yongming Shen, Michael Ferdman, and Peter Milder.
Escher: A cnn accelerator with flexible buffering to
minimize off-chip transfer. In FCCM, 2017.

[17] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen.
Pipelayer: A pipelined reram-based accelerator for deep
learning. In HPCA, 2017.

[18] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara,
Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel Emer, Stephen W Keckler, and William J
Dally. SCNN: An Accelerator for Compressed-sparse
Convolutional Neural Networks. In ISCA, 2017.

[19] Norman P. Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho,
Doug Hogberg, John Hu, Robert Hundt, Dan Hurt,
Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law,
Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps,

Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan,
Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance
analysis of a tensor processing unit. In ISCA, 2017.

[20] Yongming Shen, Michael Ferdman, and Peter Milder.
Maximizing cnn accelerator efficiency through resource
partitioning. In ISCA, 2017.

[21] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna.
Maeri: Enabling flexible dataflow mapping over dnn
accelerators via reconfigurable interconnects. ASPLOS,
2018.

[22] Jinmook Lee, Changhyeon Kim, Sanghoon Kang,
Dongjoo Shin, Sangyeob Kim, and Hoi-Jun Yoo. Unpu:
A 50.6 tops/w unified deep neural network accelerator
with 1b-to-16b fully-variable weight bit-precision. In
ISSCC, 2018.

[23] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne
Sze. Eyeriss v2: A flexible accelerator for emerging
deep neural networks on mobile devices. JETCAS, 2019.

[24] Yakun Sophia Shao, Jason Clemons, Rangharajan
Venkatesan, Brian Zimmer, Matthew Fojtik, Nan Jiang,
Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang,
William J. Dally, Joel Emer, C. Thomas Gray, Brucek
Khailany, and Stephen W. Keckler. Simba: Scaling
deep-learning inference with multi-chip-module-based
architecture. In MICRO, 2019.

[25] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and
Christos Kozyrakis. Tangram: Optimized coarse-grained
dataflow for scalable nn accelerators. In ASPLOS, 2019.

[26] Tong Geng, Ang Li, Runbin Shi, Chunshu Wu, Tianqi
Wang, Yanfei Li, Pouya Haghi, Antonino Tumeo, Shuai
Che, Steve Reinhardt, and Martin C. Herbordt. Awb-gcn:
A graph convolutional network accelerator with runtime
workload rebalancing. In MICRO, 2020.

[27] Mingyu Yan, Lei Deng, Xing Hu, Ling Liang, Yujing
Feng, Xiaochun Ye, Zhimin Zhang, Dongrui Fan, and
Yuan Xie. Hygcn: A gcn accelerator with hybrid
architecture. In HPCA, 2020.

[28] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim,
Sean Kinzer, Brahmendra Reddy Yatham, Navateja Alla,
Hardik Sharma, Mohammad Alian, Eiman Ebrahimi,
Nam Sung Kim, Cliff Young, and Hadi Esmaeilzadeh.
Planaria: Dynamic architecture fission for spatial multi-
tenant acceleration of deep neural networks. In MICRO,
2020.

[29] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet
Nadella, Sudarshan Srinivasan, Dipankar Das, Bharat
Kaul, and Tushar Krishna. Sigma: A sparse and irregular
gemm accelerator with flexible interconnects for dnn
training. HPCA, 2020.

[30] Shengwen Liang, Ying Wang, Cheng Liu, Lei He,
Huawei LI, Dawen Xu, and Xiaowei Li. Engn: A high-

throughput and energy-efficient accelerator for large
graph neural networks. TC, 2021.

[31] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan
Bunescu. Gcnax: A flexible and energy-efficient acceler-
ator for graph convolutional neural networks. In HPCA,
2021.

[32] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur
Satish, and Margaret Martonosi. Graphicionado: A high-
performance and energy-efficient accelerator for graph
analytics. In MICRO, 2016.

[33] Jinho Lee, Heesu Kim, Sungjoo Yoo, Kiyoung Choi,
H. Peter Hofstee, Gi-Joon Nam, Mark R. Nutter, and
Damir Jamsek. Extrav: Boosting graph processing near
storage with a coherent accelerator. PVLDB, 2017.

[34] Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin,
and Bingsheng He. An efficient graph accelerator with
parallel data conflict management. In PACT, 2018.

[35] Anurag Mukkara, Nathan Beckmann, Maleen Abeydeera,
Xiaosong Ma, and Daniel Sanchez. Exploiting locality in
graph analytics through hardware-accelerated traversal
scheduling. In MICRO, 2018.

[36] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu
Gao, Yongwei Wu, Kang Chen, Christos Kozyrakis, and
Xuehai Qian. Graphp: Reducing communication for
pim-based graph processing with efficient data partition.
In HPCA, 2018.

[37] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and
Yiran Chen. Graphr: Accelerating graph processing using
reram. In HPCA, 2018.

[38] Dan Zhang, Xiaoyu Ma, Michael Thomson, and Derek
Chiou. Minnow: Lightweight offload engines for worklist
management and worklist-directed prefetching. In
ASPLOS, 2018.

[39] Amirali Boroumand, Saugata Ghose, Minesh Patel,
Hasan Hassan, Brandon Lucia, Rachata Ausavarung-
nirun, Kevin Hsieh, Nastaran Hajinazar, Krishna T.
Malladi, Hongzhong Zheng, and Onur Mutlu. Conda:
Efficient cache coherence support for near-data acceler-
ators. In ISCA, 2019.

[40] Anurag Mukkara, Nathan Beckmann, and Daniel
Sanchez. Phi: Architectural support for synchronization-
and bandwidth-efficient commutative scatter updates. In
MICRO, 2019.

[41] Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta.
Graphpulse: An event-driven hardware accelerator for
asynchronous graph processing. In MICRO, 2020.

[42] Yu Zhang, Xiaofei Liao, Hai Jin, Ligang He, Bingsheng
He, Haikun Liu, and Lin Gu. Depgraph: A dependency-
driven accelerator for efficient iterative graph processing.
In HPCA, 2021.

[43] Shafiur Rahman, Mahbod Afarin, Nael Abu-Ghazaleh,
and Rajiv Gupta. Jetstream: Graph analytics on stream-
ing data with event-driven hardware accelerator. In
MICRO, 2021.

[44] Jin Zhao, Yu Zhang, Xiaofei Liao, Ligang He, Bingsheng
He, Hai Jin, and Haikun Liu. Lccg: A locality-centric

hardware accelerator for high throughput of concurrent
graph processing. In SC, 2021.

[45] Yatish Turakhia, Gill Bejerano, and William J. Dally.
Darwin: A genomics co-processor provides up to
15,000x acceleration on long read assembly. In ASPLOS,
2018.

[46] Daichi Fujiki, Arun Subramaniyan, Tianjun Zhang,
Yu Zeng, Reetuparna Das, David Blaauw, and Satish
Narayanasamy. Genax: A genome sequencing accelera-
tor. In ISCA, 2018.

[47] Jason Cong, Licheng Guo, Po-Tsang Huang, Peng
Wei, and Tianhe Yu. Smem++: A pipelined and
time-multiplexed smem seeding accelerator for genome
sequencing. In FPL, 2018.

[48] Subho Sankar Banerjee, Mohamed El-Hadedy, Jong Bin
Lim, Zbigniew T. Kalbarczyk, Deming Chen, Steven S.
Lumetta, and Ravishankar K. Iyer. Asap: Accelerated
short-read alignment on programmable hardware. IEEE
Transactions on Computers, 2019.

[49] Anirban Nag, C. N. Ramachandra, Rajeev Balasubramo-
nian, Ryan Stutsman, Edouard Giacomin, Hari Kam-
balasubramanyam, and Pierre-Emmanuel Gaillardon.
Gencache: Leveraging in-cache operators for efficient
sequence alignment. In MICRO, 2019.

[50] Wenqin Huangfu, Xueqi Li, Shuangchen Li, Xing Hu,
Peng Gu, and Yuan Xie. Medal: Scalable dimm
based near data processing accelerator for dna seeding
algorithm. In MICRO, 2019.

[51] Damla Senol Cali, Gurpreet S. Kalsi, Zülal Bingöl, Can
Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata
Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna,
Amirali Boroumand, Anant Norion, Allison Scibisz,
Sreenivas Subramoneyon, Can Alkan, Saugata Ghose,
and Onur Mutlu. Genasm: A high-performance, low-
power approximate string matching acceleration frame-
work for genome sequence analysis. In MICRO, 2020.

[52] Yeseong Kim, Mohsen Imani, Niema Moshiri, and
Tajana Rosing. Geniehd: Efficient dna pattern matching
accelerator using hyperdimensional computing. In DATE,
2020.

[53] Wenqin Huangfu, Krishna T. Malladi, Shuangchen Li,
Peng Gu, and Yuan Xie. Nest: Dimm based near-data-
processing accelerator for k-mer counting. In ICCAD,
2020.

[54] Ann Franchesca Laguna, Hasindu Gamaarachchi, Xun-
zhao Yin, Michael Niemier, Sri Parameswaran, and
X. Sharon Hu. Seed-and-vote based in-memory ac-
celerator for dna read mapping. In ICCAD, 2020.

[55] Daichi Fujiki, Shunhao Wu, Nathan Ozog, Kush Goliya,
David Blaauw, Satish Narayanasamy, and Reetuparna
Das. Seedex: A genome sequencing accelerator for
optimal alignments in subminimal space. In MICRO,
2020.

[56] Abbas Haghi, Santiago Marco-Sola, Lluc Alvarez,
Dionysios Diamantopoulos, Christoph Hagleitner, and
Miquel Moreto. An fpga accelerator of the wavefront

algorithm for genomics pairwise alignment. In FPL,
2021.

[57] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa,
Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla
Senol Cali, Can Firtina, Haiyu Mao, Nour Almad-
houn Alserr, Rachata Ausavarungnirun, Nandita Vijayku-
mar, Mohammed Alser, and Onur Mutlu. Genstore:
A high-performance in-storage processing system for
genome sequence analysis. In ASPLOS, 2022.

[58] Damla Senol Cali, Konstantinos Kanellopoulos, Joël Lin-
degger, Zülal Bingöl, Gurpreet S. Kalsi, Ziyi Zuo, Can
Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika Man-
souri Ghiasi, Gagandeep Singh, Juan Gómez-Luna,
Nour Almadhoun Alserr, Mohammed Alser, Sreenivas
Subramoney, Can Alkan, Saugata Ghose, and Onur
Mutlu. Segram: A universal hardware accelerator for
genomic sequence-to-graph and sequence-to-sequence
mapping. In ISCA, 2022.

[59] Onur Kocberber, Boris Grot, Javier Picorel, Babak
Falsafi, Kevin Lim, and Parthasarathy Ranganathan.
Meet the walkers: Accelerating index traversals for in-
memory databases. In MICRO, 2013.

[60] Sean Murray, William Floyd-Jones, Ying Qi, George
Konidaris, and Daniel J. Sorin. The microarchitecture
of a real-time robot motion planning accelerator. In
MICRO, 2016.

[61] Jacob Sacks, Divya Mahajan, Richard C Lawson, and
Hadi Esmaeilzadeh. Robox: an end-to-end solution to
accelerate autonomous control in robotics. In ISCA,
2018.

[62] Yujun Lin, Zhekai Zhang, Haotian Tang, Hanrui Wang,
and Song Han. Pointacc: Efficient point cloud accelerator.
In MICRO, 2021.

[63] Sabrina M. Neuman, Brian Plancher, Thomas Bourgeat,
Thierry Tambe, Srinivas Devadas, and Vijay Janapa
Reddi. Robomorphic computing: A design methodology
for domain-specific accelerators parameterized by robot
morphology. In ASPLOS, 2021.

[64] Swagath Venkataramani, Vijayalakshmi Srinivasan, Wei
Wang, Sanchari Sen, Jintao Zhang, Ankur Agrawal,
Monodeep Kar, Shubham Jain, Alberto Mannari, Hoang
Tran, Yulong Li, Eri Ogawa, Kazuaki Ishizaki, Hiroshi
Inoue, Marcel Schaal, Mauricio Serrano, Jungwook
Choi, Xiao Sun, Naigang Wang, Chia-Yu Chen, Allison
Allain, James Bonano, Nianzheng Cao, Robert Casatuta,
Matthew Cohen, Bruce Fleischer, Michael Guillorn,
Howard Haynie, Jinwook Jung, Mingu Kang, Kyu-
hyoun Kim, Siyu Koswatta, Saekyu Lee, Martin Lutz,
Silvia Mueller, Jinwook Oh, Ashish Ranjan, Zhibin Ren,
Scot Rider, Kerstin Schelm, Michael Scheuermann, Joel
Silberman, Jie Yang, Vidhi Zalani, Xin Zhang, Ching
Zhou, Matt Ziegler, Vinay Shah, Moriyoshi Ohara, Pong-
Fei Lu, Brian Curran, Sunil Shukla, Leland Chang,
and Kailash Gopalakrishnan. RaPiD: AI accelerator
for ultra-low precision training and inference. In
Proceedings of the 48th Annual International Sym-

posium on Computer Architecture, ISCA ’21, page
153–166. IEEE Press, 2021. ISBN 9781450390866.
doi: 10.1109/ISCA52012.2021.00021.

[65] AWS inferentia, . URL https : / /aws.amazon.com/
machine-learning/inferentia/.

[66] AWS trainium, . URL https://aws.amazon.com/machine-
learning/trainium/.

[67] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek
Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth, Jan Gray,
Michael Haselman, Scott Hauck, Stephen Heil, Amir
Hormati, Joo-Young Kim, Sitaram Lanka, James R.
Larus, Eric Peterson, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A reconfigurable
fabric for accelerating large-scale datacenter services. In
ISCA, 2014.

[68] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka,
Derek Chiou, and Doug Burger. A cloud-scale accelera-
tion architecture. In MICRO, 2016.

[69] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alka-
lay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz,
Lisa Woods, Sitaram Lanka, Steven K. Reinhardt,
Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
A configurable cloud-scale dnn processor for real-time
ai. In ISCA, 2018.

[70] Rohan Mahapatra, Soroush Ghodrati, Byung Hoon Ahn,
Sean Kinzer, Shu ting Wang, Hanyang Xu, Lavanya
Karthikeyan, Hardik Sharma, Amir Yazdanbakhsh, Mo-
hammad Alian, and Hadi Esmaeilzadeh. Domain-specific
computational storage for serverless computing. arXiv,
2023.

[71] Joon Kyung Kim, Byung Hoon Ahn, Sean Kinzer,
Soroush Ghodrati, Rohan Mahapatra, Brahmendra
Yatham, Shu-Ting Wang, Dohee Kim, Parisa Sarikhani,
Babak Mahmoudi, Divya Mahajan, Jongse Park, and
Hadi Esmaeilzadeh. Yin-yang: Programming abstrac-
tions for cross-domain multi-acceleration. IEEE Micro,
42(5):89–98, 2022. doi: 10.1109/MM.2022.3189416.

[72] Azure zipline, . URL https://azure.microsoft.com/en-
us/blog/improved-cloud-service-performance-through-
asic-acceleration/.

[73] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft,
Mark Gottscho, Thomas B. Jablin, George Kurian, James
Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie,
Nishant Patil, Sushma Prasad, Cliff Young, Zongwei
Zhou, and David Patterson. Ten lessons from three
generations shaped google’s tpuv4i : Industrial product.
In ISCA, 2021.

[74] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff
Calow, Jeremy Dorfman, Marisabel Guevara, Clin-

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/trainium/
https://aws.amazon.com/machine-learning/trainium/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/
https://azure.microsoft.com/en-us/blog/improved-cloud-service-performance-through-asic-acceleration/

ton Wills Smullen IV, Aki Kuusela, Raghu Balasubrama-
nian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung,
In Suk Chong, Niranjani Dasharathi, Jia Feng, Brian
Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki
Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr.,
Elisha Indupalli, Indira Jayaram, Poonacha Kongetira,
Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou,
Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire
Mahony, David Alexander Munday, Srikanth Muroor,
Narayana Penukonda, Eric Perkins-Argueta, Devin Per-
saud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley,
Amir Salek, Sathish Sekar, Sergey N. Sokolov, Rob
Springer, Don Stark, Mercedes Tan, Mark S. Wachsler,
Andrew C. Walton, David A. Wickeraad, Alvin Wijaya,
and Hon Kwan Wu. Warehouse-scale video acceleration:
Co-design and deployment in the wild. In ASPLOS,
2021.

[75] Amin Firoozshahian, Joel Coburn, Roman Levenstein,
Rakesh Nattoji, Ashwin Kamath, Olivia Wu, Gur-
deepak Grewal, Harish Aepala, Bhasker Jakka, Bob
Dreyer, Adam Hutchin, Utku Diril, Krishnakumar Nair,
Ehsan K. Aredestani, Martin Schatz, Yuchen Hao,
Rakesh Komuravelli, Kunming Ho, Sameer Abu Asal,
Joe Shajrawi, Kevin Quinn, Nagesh Sreedhara, Pankaj
Kansal, Willie Wei, Dheepak Jayaraman, Linda Cheng,
Pritam Chopda, Eric Wang, Ajay Bikumandla, Arun
Karthik Sengottuvel, Krishna Thottempudi, Ashwin
Narasimha, Brian Dodds, Cao Gao, Jiyuan Zhang,
Mohammed Al-Sanabani, Ana Zehtabioskuie, Jordan
Fix, Hangchen Yu, Richard Li, Kaustubh Gondkar,
Jack Montgomery, Mike Tsai, Saritha Dwarakapuram,
Sanjay Desai, Nili Avidan, Poorvaja Ramani, Karthik
Narayanan, Ajit Mathews, Sethu Gopal, Maxim Naumov,
Vijay Rao, Krishna Noru, Harikrishna Reddy, Prahlad
Venkatapuram, and Alexis Bjorlin. Mtia: First generation
silicon targeting meta’s recommendation systems. In
Proceedings of the 50th Annual International Symposium
on Computer Architecture, ISCA ’23, New York, NY,
USA, 2023. Association for Computing Machinery.
ISBN 9798400700958. doi: 10.1145/3579371.3589348.
URL https://doi.org/10.1145/3579371.3589348.

[76] Rohit Badlaney. How IBM is helping clients de-
ploy foundation models and AI workloads with new
GPU offering on IBM cloud, 2023. URL https :
//newsroom.ibm.com/How- IBM- is- Helping- Clients-
Deploy-Foundation-Models-and-AI-Workloads-with-
New-GPU-Offering-on-IBM-Cloud.

[77] T. Gershon, B. Karacali-Akyamac, S. Seelam,
D. Thorstensen, and R. Badlaney. Supercharging
IBM’s cloud-native AI supercomputer, 2023. URL
https://research.ibm.com/blog/vela-ai-supercomputer-
updates.

[78] Jeffrey Burns and Leland Chang. IBM artificial intelli-
gence unit, 2022. URL https://research.ibm.com/blog/
ibm-artificial-intelligence-unit-aiu.

[79] Gene M. Amdahl. Validity of the single processor

approach to achieving large scale computing capabili-
ties. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), page
483–485, New York, NY, USA, 1967. Association for
Computing Machinery. ISBN 9781450378956. doi:
10.1145/1465482.1465560. URL https://doi.org/10.1145/
1465482.1465560.

[80] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A.
Kim, and Kenneth A. Ross. Q100: The architecture and
design of a database processing unit. In Proceedings
of the 19th International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’14, page 255–268, New York, NY,
USA, 2014. Association for Computing Machinery.
ISBN 9781450323055. doi: 10.1145/2541940.2541961.
URL https://doi.org/10.1145/2541940.2541961.

[81] Onur Kocberber, Boris Grot, Javier Picorel, Babak
Falsafi, Kevin Lim, and Parthasarathy Ranganathan.
Meet the walkers: Accelerating index traversals for in-
memory databases. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-46, page 468–479, New York, NY, USA,
2013. Association for Computing Machinery. ISBN
9781450326384. doi: 10.1145/2540708.2540748. URL
https://doi.org/10.1145/2540708.2540748.

[82] David Sidler, Muhsen Owaida, Zsolt István, Kaan Kara,
and Gustavo Alonso. doppiodb: A hardware accelerated
database. In FPL, 2017.

[83] Monica Chiosa, Fabio Maschi, Ingo Müller, Gustavo
Alonso, and Norman May. Hardware acceleration of
compression and encryption in sap hana. Proc. VLDB
Endow., 15(12):3277–3291, 2022.

[84] Afzal Ahmad, Muhammad Adeel Pasha, and Ghulam Ji-
lani Raza. Accelerating tiny yolov3 using fpga-based
hardware/software co-design. In IEEE ISCAS, 2020.

[85] Justin Salamon, Christopher Jacoby, and Juan Pablo
Bello. A dataset and taxonomy for urban sound research.
In ACM Multimedia, 2014.

[86] Dmitrii Krylov, Remi des Combes, Romain Laroche,
Michael Rosenblum, and Dmitry V Dylov. Reinforce-
ment learning framework for deep brain stimulation
study. In IJCAI, 2020.

[87] Presidio: Data protection and anonymization sdk, . URL
https://microsoft.github.io/presidio/.

[88] Cxl 3.0 specification. URL https : / /
www.computeexpresslink.org / download - the -
specification.

[89] Mark Horowitz. 1.1 computing’s energy problem
(and what we can do about it). In 2014 IEEE In-
ternational Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), pages 10–14, 2014. doi:
10.1109/ISSCC.2014.6757323.

[90] Arijit Biswas. Sapphire rapids. In Hot Chips, 2021.
[91] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein,

Ashutosh Mishra, Craig B. Agricola, Bedri Sendir, Alper
Buyuktosunoglu, Christian Jacobi, William J. Starke,

https://doi.org/10.1145/3579371.3589348
https://newsroom.ibm.com/How-IBM-is-Helping-Clients-Deploy-Foundation-Models-and-AI-Workloads-with-New-GPU-Offering-on-IBM-Cloud
https://newsroom.ibm.com/How-IBM-is-Helping-Clients-Deploy-Foundation-Models-and-AI-Workloads-with-New-GPU-Offering-on-IBM-Cloud
https://newsroom.ibm.com/How-IBM-is-Helping-Clients-Deploy-Foundation-Models-and-AI-Workloads-with-New-GPU-Offering-on-IBM-Cloud
https://newsroom.ibm.com/How-IBM-is-Helping-Clients-Deploy-Foundation-Models-and-AI-Workloads-with-New-GPU-Offering-on-IBM-Cloud
https://research.ibm.com/blog/vela-ai-supercomputer-updates
https://research.ibm.com/blog/vela-ai-supercomputer-updates
https://research.ibm.com/blog/ibm-artificial-intelligence-unit-aiu
https://research.ibm.com/blog/ibm-artificial-intelligence-unit-aiu
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1145/2540708.2540748
https://microsoft.github.io/presidio/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification

Haren Myneni, and Charlie Wang. Data compression
accelerator on IBM POWER9 and z15 processors :
Industrial product. In ISCA, 2020.

[92] Cedric Lichtenau, Alper Buyuktosunoglu, Ramon
Bertran, Peter Figuli, Christian Jacobi, Nikolaos Pa-
pandreou, Haris Pozidis, Anthony Saporito, Andrew
Sica, and Elpida Tzortzatos. AI accelerator on IBM
Telum processor: Industrial product. In Proceedings of
the 49th Annual International Symposium on Computer
Architecture, ISCA ’22, page 1012–1028, New York,
NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450386104. doi: 10.1145/3470496.3533042.
URL https://doi.org/10.1145/3470496.3533042.

[93] Intel built-in accelerators. URL https :
/ / www.supermicro.com / en / accelerators / intel / built -
in-on-demand.

[94] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin
Lepak, Gabriel H. Loh, Mahesh Subramony, and Sean
White. Pioneering chiplet technology and design for
the amd epyc™ and ryzen™ processor families. In
Proceedings of the 48th Annual International Symposium
on Computer Architecture, 2021.

[95] ODSA-BoW specifications. URL https :
/ / opencomputeproject.github.io / ODSA - BoW /
bow_specification.html.

[96] UCIe 1.1 specifications. URL https :
//www.uciexpress.org/specifications.

[97] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
sdn. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, 2013.

[98] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivara-
man, Shay Vargaftik, Alon Berger, Gal Mendelson, Mo-
hammad Alizadeh, Shang-Tse Chuang, Isaac Keslassy,
Ariel Orda, and Tom Edsall. Drmt: Disaggregated
programmable switching. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data
Communication, 2017.

[99] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network computa-
tion is a dumb idea whose time has come. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks,
2017.

[100] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone,
Robert Soulé, and Noa Zilberman. The case for in-
network computing on demand. In Proceedings of the
Fourteenth EuroSys Conference 2019, 2019.

[101] Ahmad Yasin. A top-down method for performance
analysis and counters architecture. In 2014 IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 35–44, 2014.

[102] Intel vtune profiler, . URL https://www.intel.com/
content / www / us / en / developer / tools / oneapi / vtune -
profiler.html.

[103] CloudSuite | A Benchmark Suite for Cloud Services.
URL https://www.cloudsuite.ch/.

[104] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM:
An automated end-to-end optimizing compiler for deep
learning. In OSDI, 2018.

[105] Sean Kinzer, Soroush Ghodrati, Rohan Mahapatra,
Byung Hoon Ahn, Edwin Mascarenhas, Xiaolong Li,
Janarbek Matai, Liang Zhang, and Hadi Esmaeilzadeh.
Restoring the broken covenant between compilers and
deep learning accelerators. arXiv, 2023.

[106] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang,
Thierry Moreau, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. Learning to optimize tensor programs.
In NeurIPS, pages 3389–3400, 2018.

[107] Linux kernel drm-gem drivers, . URL https : / /
www.kernel.org/doc/html/latest/gpu/drm-mm.html.

[108] Lwn.net article on gem, . URL https://lwn.net/Articles/
283798/.

[109] dma-buf. URL https://docs.kernel.org/driver-api/dma-
buf.html.

[110] Napi. URL https://www.kernel.org/doc/html/next/
networking/napi.html.

[111] Xilinx u30 vcu, . URL https : / /www.xilinx.com/
content / dam / xilinx / support / documents / data_sheets /
ds970-u30.pdf.

[112] Xilinx vitis dsp library, . URL https://xilinx.github.io/
Vitis_Libraries/dsp/2022.1/index.html.

[113] Xilinx vitis data analytics library, . URL https://
xilinx.github.io/Vitis_Libraries/data_analytics/2022.1/
index.html.

[114] Xilinx vitis security library, . URL
https : / / xilinx.github.io / Vitis_Libraries / security /
2022.1/index.html.

[115] Xilinx vitis data compression library, . URL https:
/ / xilinx.github.io / Vitis_Libraries / data_compression /
2022.1/index.html.

[116] Xilinx vitis database library, . URL https :
/ / xilinx.github.io / Vitis_Libraries / database / 2022.1 /
index.html.

[117] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv, 2018.

[118] James E. Stine, Ivan Castellanos, Michael Wood, Jeff
Henson, Fred Love, W. Rhett Davis, Paul D. Franzon,
Michael Bucher, Sunil Basavarajaiah, Julie Oh, and
Ravi Jenkal. Freepdk: An open-source variation-aware
design kit. In 2007 IEEE International Conference
on Microelectronic Systems Education (MSE’07), pages
173–174, 2007. doi: 10.1109/MSE.2007.44.

[119] Amazon EC2 F1 Instances. URL https :
//aws.amazon.com/ec2/instance-types/f1/.

[120] Aws vt1 instance, . URL https://xilinx.github.io/video-
sdk/v1.5/getting_started_on_vt1.html.

[121] Xilinx vitis libraries, . URL https://xilinx.github.io/
Vitis_Libraries/.

https://doi.org/10.1145/3470496.3533042
https://www.supermicro.com/en/accelerators/intel/built-in-on-demand
https://www.supermicro.com/en/accelerators/intel/built-in-on-demand
https://www.supermicro.com/en/accelerators/intel/built-in-on-demand
https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html
https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html
https://opencomputeproject.github.io/ODSA-BoW/bow_specification.html
https://www.uciexpress.org/specifications
https://www.uciexpress.org/specifications
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.cloudsuite.ch/
https://www.kernel.org/doc/html/latest/gpu/drm-mm.html
https://www.kernel.org/doc/html/latest/gpu/drm-mm.html
https://lwn.net/Articles/283798/
https://lwn.net/Articles/283798/
https://docs.kernel.org/driver-api/dma-buf.html
https://docs.kernel.org/driver-api/dma-buf.html
https://www.kernel.org/doc/html/next/networking/napi.html
https://www.kernel.org/doc/html/next/networking/napi.html
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds970-u30.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds970-u30.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds970-u30.pdf
https://xilinx.github.io/Vitis_Libraries/dsp/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/dsp/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/data_analytics/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/data_analytics/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/data_analytics/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/security/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/security/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/data_compression/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/data_compression/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/data_compression/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/database/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/database/2022.1/index.html
https://xilinx.github.io/Vitis_Libraries/database/2022.1/index.html
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://xilinx.github.io/video-sdk/v1.5/getting_started_on_vt1.html
https://xilinx.github.io/video-sdk/v1.5/getting_started_on_vt1.html
https://xilinx.github.io/Vitis_Libraries/
https://xilinx.github.io/Vitis_Libraries/

[122] Intel rapl, . URL https://www.intel.com/content/www/
us/en/developer/articles/ technical /software- security-
guidance/advisory- guidance/running- average- power-
limit-energy-reporting.html.

[123] Broadcom pex88000 managed pci express 4.0 switches.
URL https : / / www.broadcom.com / products / pcie -
switches-bridges/expressfabric.

[124] Noah Beck, Sean White, Milam Paraschou, and Samuel
Naffziger. Zeppelin: An soc for multichip architectures.
In IEEE ISSCC, 2018.

[125] Transformers based named entity recognition models.
URL https://huggingface.co/Jean-Baptiste/roberta-large-
ner-english.

[126] Hadi Esmaeilzadeh, Soroush Ghodrati, Jie Gu, Shiyu
Guo, Andrew B. Kahng, Joon Kyung Kim, Sean
Kinzer, Rohan Mahapatra, Susmita Dey Manasi, Edwin
Mascarenhas, Sachin S. Sapatnekar, Ravi Varadarajan,
Zhiang Wang, Hanyang Xu, Brahmendra Reddy Yatham,
and Ziqing Zeng. Verigood-ml: An open-source flow
for automated ml hardware synthesis. In ICCAD, 2021.

[127] Intel cascade lake, . URL https://ark.intel.com/content/
www/us/en/ark/products/192447/intel-xeon-gold-6252-
processor-35-75m-cache-2-10-ghz.html.

[128] Intel ice lake, . URL https://ark.intel.com/content/
www/us/en/ark/products/212456/intel-xeon-gold-6348-
processor-42m-cache-2-60-ghz.html.

[129] Intel sapphire rapids, . URL https://ark.intel.com/content/
www/us/en/ark/products/231750/intel-xeon-platinum-
8468h-processor-105m-cache-2-10-ghz.html.

[130] Gpudirect. URL https://developer.nvidia.com/gpudirect.
[131] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark

Gahagan, and Steven Swanson. Morpheus: Creating ap-
plication objects efficiently for heterogeneous computing.
In ISCA, 2016.

[132] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and
Mark Silberstein. SPIN: Seamless operating system
integration of Peer-to-Peer DMA between SSDs and
GPUs. In ATC, 2017.

[133] Yu-Chia Liu and Hung-Wei Tseng. Nds: N-dimensional
storage. In MICRO, 2021.

[134] Ryo Nakamura, Yohei Kuga, and Kunio Akashi. How
beneficial is peer-to-peer dma? In APSys, 2020.

[135] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:
A smartnic-driven accelerator-centric architecture for
network servers. In ASPLOS, 2020.

[136] Haggai Eran, Maxim Fudim, Gabi Malka, Gal Shalom,
Noam Cohen, Amit Hermony, Dotan Levi, Liran Liss,
and Mark Silberstein. Flexdriver: A network driver for
your accelerator. In ASPLOS, 2022.

[137] Jason Cong, Mohammad Ali Ghodrat, Michael Gill,
Beayna Grigorian, and Glenn Reinman. Architecture
support for accelerator-rich cmps. In Proceedings of the
49th Annual Design Automation Conference, 2012.

[138] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar,
Eshaan Minocha, Sameh Elnikety, Saurabh Bagchi, and
Somali Chaterji. Wisefuse: Workload characterization

and dag transformation for serverless workflows. In
SIGMETRICS, 2022.

[139] Rohan Mahapatra, Byung Hoon Ahn, Shu-Ting Wang,
Hanyang Xu, and Hadi Esmaeilzadeh. Exploring efficient
ml-based scheduler for microservices in heterogenous
clusters. In Machine Learning for Computer Architecture
and Systems 2022, 2022.

[140] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters. In
ASPLOS, 2013.

[141] Intel data streaming accelerator, . URL
https: / /www.intel.com/content/www/us/en/develop/
articles/intel-data-streaming-accelerator-architecture-
specification.html.

[142] Jaehyung Ahn, Dongup Kwon, Youngsok Kim, Moham-
madamin Ajdari, Jaewon Lee, and Jangwoo Kim. Dcs:
A fast and scalable device-centric server architecture. In
MICRO, 2015.

[143] Dongup Kwon, Jaehyung Ahn, Dongju Chae, Moham-
madamin Ajdari, Jaewon Lee, Suheon Bae, Youngsok
Kim, and Jangwoo Kim. Dcs-ctrl: A fast and flexi-
ble device-control mechanism for device-centric server
architecture. In ISCA, 2018.

[144] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir,
Mark Sutherland, Zilu Tian, Mario Paulo Drumond,
Babak Falsafi, and Christoph Koch. Optimus prime:
Accelerating data transformation in servers. In ASPLOS,
2020.

[145] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry
Zhao, Dinesh Parimi, Borivoje Nikolic, Krste Asanovic,
and Parthasarathy Ranganathan. A hardware accelerator
for protocol buffers. In MICRO, 2021.

[146] Sizhuo Zhang, Hari Angepat, and Derek Chiou. Hgum:
Messaging framework for hardware accelerators. In
ReConFig, 2017.

[147] Johan Peltenburg, Jeroen Van Straten, Lars Wijtemans,
Lars Van Leeuwen, Zaid Al-Ars, and Peter Hofstee.
Fletcher: A framework to efficiently integrate fpga
accelerators with apache arrow. In FPL.

[148] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor
Indyk. Tf.data: A machine learning data processing
framework. Proc. VLDB Endow., 14(12), 2021.

[149] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,
Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Under-
standing data storage and ingestion for large-scale deep
recommendation model training: Industrial product. In
ISCA, 2022.

[150] Nvidia dali. URL https://developer.nvidia.com/dali.
[151] Rui Hou, Tao Jiang, Liuhang Zhang, Pengfei Qi, Jianbo

Dong, Haibin Wang, Xiongli Gu, and Shujie Zhang.
Cost effective data center servers. In HPCA, 2013.

[152] Jonas Markussen, Lars Bjørlykke Kristiansen, Pål
Halvorsen, Halvor Kielland-Gyrud, Håkon Kvale Stens-

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.broadcom.com/products/pcie-switches-bridges/expressfabric
https://www.broadcom.com/products/pcie-switches-bridges/expressfabric
https://huggingface.co/Jean-Baptiste/roberta-large-ner-english
https://huggingface.co/Jean-Baptiste/roberta-large-ner-english
https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192447/intel-xeon-gold-6252-processor-35-75m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212456/intel-xeon-gold-6348-processor-42m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231750/intel-xeon-platinum-8468h-processor-105m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231750/intel-xeon-platinum-8468h-processor-105m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/231750/intel-xeon-platinum-8468h-processor-105m-cache-2-10-ghz.html
https://developer.nvidia.com/gpudirect
https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-architecture-specification.html
https://developer.nvidia.com/dali

land, and Carsten Griwodz. Smartio: Zero-overhead
device sharing through pcie networking. ACM Trans.
Comput. Syst., 38(1–2), 2021.

[153] Gigaio fabrex. URL https://gigaio.com/wp-content/
uploads/2022/01/GigaIO- FabreX- composability_v1-
1.pdf.

[154] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei
Qu, Yongqiang Xiong, Derek Chiou, and Thomas
Moscibroda. Direct universal access: Making data center
resources available to FPGA. In NSDI, 2019.

[155] Bill Dally. Accelerator clusters: the new supercomputer.
In HOTI, 2023.

https://gigaio.com/wp-content/uploads/2022/01/GigaIO-FabreX-composability_v1-1.pdf
https://gigaio.com/wp-content/uploads/2022/01/GigaIO-FabreX-composability_v1-1.pdf
https://gigaio.com/wp-content/uploads/2022/01/GigaIO-FabreX-composability_v1-1.pdf

	Introduction
	The Case for Data Motion Acceleration
	Data Restructuring Operations
	Data Motion Overheads
	DMX: Accelerating the Data Motion

	DRX Placement
	Data Restructuring Accelerator (DRX) Design
	Data Restructuring Characterization
	DRX Hardware Architecture

	System Integration and Programmability
	Experimental Methodology
	Experimental Results
	End-to-end Performance Improvement
	DRX Placement Analysis
	Sensitivity Studies

	Related Work
	Conclusion

